13
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characterization of the First Complete Mitochondrial Genome of Cyphonocerinae (Coleoptera: Lampyridae) with Implications for Phylogeny and Evolution of Fireflies

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          The classification of Lampyridae has been extensively debated. Although some recent efforts have provided deeper insight into it, few genes have been analyzed for Cyphonocerinae in the molecular phylogenies, which undoubtedly influence elucidating the relationships of fireflies. In this study, we generated the first complete mitochondrial genome for Cyphonocerinae, with Cyphonocerus sanguineus klapperichi as the representative species. The comparative analyses of the mitogenomes were made between C . sanguineus klapperichi and that of well-characterized species. The results showed that the mitogenome of Cyphonocerinae was conservative in the organization and characters, compared with all other fireflies. Like most other insects, the cox1 gene was most converse, and the third codon positions of the protein-coding genes were more rate-heterogeneous than the first and second ones in the fireflies. The phylogenetic analyses suggested that Cyphonocerinae as an independent lineage was more closely related to Drilaster (Ototretinae). Nevertheless, more sampler species are needed in the reconstruction of fireflies’ phylogeny to verify this result.

          Abstract

          Complete mitochondrial genomes are valuable resources for phylogenetics in insects. The Cyphonoceridae represents an important lineage of fireflies. However, no complete mitogenome is available until now. Here, the first complete mitochondrial genome from this subfamily was reported, with Cyphonocerus sanguineus klapperichi as a representative. The mitogenome of C. sanguineus klapperichi was conserved in the structure and comparable to that of others in size and A+T content. Nucleotide composition was A+T-biased, and all genes exhibited a positive AT-skew and negative GC-skew. Two types of tandem repeat sequence units were present in the control region (136 bp × 2; 171 bp × 2 + 9 bp). For reconstruction of Lampyridae’s phylogeny, three different datasets were analyzed by both maximum likelihood (ML) and Bayesian inference (BI) methods. As a result, the same topology was produced by both ML analysis of 13 protein-coding genes and 2rRNA and BI analysis of 37 genes. The results indicated that Lampyridae, Lampyrinae, Luciolinae (excluding Emeia) were monophyletic, but Ototretinae was paraphyletic, of which Stenocladius was recovered as the sister taxon to all others, while Drilaster was more closely related to Cyphonocerinae; Phturinae + Emeia were included in a monophyletic clade, which comprised sister groups with Lampyridae. Vesta was deeply rooted in the Luciolinae.

          Related collections

          Most cited references99

          • Record: found
          • Abstract: found
          • Article: not found

          MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets.

          We present the latest version of the Molecular Evolutionary Genetics Analysis (Mega) software, which contains many sophisticated methods and tools for phylogenomics and phylomedicine. In this major upgrade, Mega has been optimized for use on 64-bit computing systems for analyzing larger datasets. Researchers can now explore and analyze tens of thousands of sequences in Mega The new version also provides an advanced wizard for building timetrees and includes a new functionality to automatically predict gene duplication events in gene family trees. The 64-bit Mega is made available in two interfaces: graphical and command line. The graphical user interface (GUI) is a native Microsoft Windows application that can also be used on Mac OS X. The command line Mega is available as native applications for Windows, Linux, and Mac OS X. They are intended for use in high-throughput and scripted analysis. Both versions are available from www.megasoftware.net free of charge.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies

            Large phylogenomics data sets require fast tree inference methods, especially for maximum-likelihood (ML) phylogenies. Fast programs exist, but due to inherent heuristics to find optimal trees, it is not clear whether the best tree is found. Thus, there is need for additional approaches that employ different search strategies to find ML trees and that are at the same time as fast as currently available ML programs. We show that a combination of hill-climbing approaches and a stochastic perturbation method can be time-efficiently implemented. If we allow the same CPU time as RAxML and PhyML, then our software IQ-TREE found higher likelihoods between 62.2% and 87.1% of the studied alignments, thus efficiently exploring the tree-space. If we use the IQ-TREE stopping rule, RAxML and PhyML are faster in 75.7% and 47.1% of the DNA alignments and 42.2% and 100% of the protein alignments, respectively. However, the range of obtaining higher likelihoods with IQ-TREE improves to 73.3-97.1%.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data

              Summary: The two main functions of bioinformatics are the organization and analysis of biological data using computational resources. Geneious Basic has been designed to be an easy-to-use and flexible desktop software application framework for the organization and analysis of biological data, with a focus on molecular sequences and related data types. It integrates numerous industry-standard discovery analysis tools, with interactive visualizations to generate publication-ready images. One key contribution to researchers in the life sciences is the Geneious public application programming interface (API) that affords the ability to leverage the existing framework of the Geneious Basic software platform for virtually unlimited extension and customization. The result is an increase in the speed and quality of development of computation tools for the life sciences, due to the functionality and graphical user interface available to the developer through the public API. Geneious Basic represents an ideal platform for the bioinformatics community to leverage existing components and to integrate their own specific requirements for the discovery, analysis and visualization of biological data. Availability and implementation: Binaries and public API freely available for download at http://www.geneious.com/basic, implemented in Java and supported on Linux, Apple OSX and MS Windows. The software is also available from the Bio-Linux package repository at http://nebc.nerc.ac.uk/news/geneiousonbl. Contact: peter@biomatters.com
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Insects
                Insects
                insects
                Insects
                MDPI
                2075-4450
                22 June 2021
                July 2021
                : 12
                : 7
                : 570
                Affiliations
                [1 ]The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; gexueying@ 123456stumail.hbu.edu.cn (X.G.); 201972421@ 123456yangtzeu.edu.cn (L.Y.); 20208017081@ 123456stumail.hbu.edu.cn (Y.K.); liutong@ 123456stumail.hbu.edu.cn (T.L.)
                [2 ]College of Agriculture, Yangtze University, Jingzhou 434025, China
                Author notes
                [* ]Correspondence: liuhy@ 123456hbu.edu.cn (H.L.); yxyang@ 123456hbu.edu.cn (Y.Y.)
                Author information
                https://orcid.org/0000-0003-1383-5560
                https://orcid.org/0000-0002-3118-6659
                Article
                insects-12-00570
                10.3390/insects12070570
                8307346
                34206376
                f3b6e5f5-dd59-4987-94e3-5528b9068d69
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 17 May 2021
                : 19 June 2021
                Categories
                Article

                lampyridae,cyphonocerinae,cyphonocerus sanguineus klapperichi,mitochondrial genome,characterization,comparative analysis,phylogeny

                Comments

                Comment on this article