85
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators

      , ,
      Nature Reviews Immunology
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Active resolution of acute inflammation is a previously unrecognized interface between innate and adaptive immunity. Once thought to be a passive process, the resolution of inflammation is now shown to involve active biochemical programmes that enable inflamed tissues to return to homeostasis. This Review presents new cellular and molecular mechanisms for the resolution of inflammation, revealing key roles for eicosanoids, such as lipoxins, and recently discovered families of endogenous chemical mediators, termed resolvins and protectins. These mediators have anti-inflammatory and pro-resolution properties, thereby protecting organs from collateral damage, stimulating the clearance of inflammatory debris and promoting mucosal antimicrobial defence.

          Related collections

          Most cited references88

          • Record: found
          • Abstract: found
          • Article: not found

          Resolution of inflammation: state of the art, definitions and terms.

          A recent focus meeting on Controlling Acute Inflammation was held in London, April 27-28, 2006, organized by D.W. Gilroy and S.D. Brain for the British Pharmacology Society. We concluded at the meeting that a consensus report was needed that addresses the rapid progress in this emerging field and details how the specific study of resolution of acute inflammation provides leads for novel anti-inflammatory therapeutics, as well as defines the terms and key components of interest in the resolution process within tissues as appreciated today. The inflammatory response protects the body against infection and injury but can itself become dysregulated with deleterious consequences to the host. It is now evident that endogenous biochemical pathways activated during defense reactions can counter-regulate inflammation and promote resolution. Hence, resolution is an active rather than a passive process, as once believed, which now promises novel approaches for the treatment of inflammation-associated diseases based on endogenous agonists of resolution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Novel Functional Sets of Lipid-Derived Mediators with Antiinflammatory Actions Generated from Omega-3 Fatty Acids via Cyclooxygenase 2–Nonsteroidal Antiinflammatory Drugs and Transcellular Processing

            Aspirin therapy inhibits prostaglandin biosynthesis without directly acting on lipoxygenases, yet via acetylation of cyclooxygenase 2 (COX-2) it leads to bioactive lipoxins (LXs) epimeric at carbon 15 (15-epi-LX, also termed aspirin-triggered LX [ATL]). Here, we report that inflammatory exudates from mice treated with ω-3 polyunsaturated fatty acid and aspirin (ASA) generate a novel array of bioactive lipid signals. Human endothelial cells with upregulated COX-2 treated with ASA converted C20:5 ω-3 to 18R-hydroxyeicosapentaenoic acid (HEPE) and 15R-HEPE. Each was used by polymorphonuclear leukocytes to generate separate classes of novel trihydroxy-containing mediators, including 5-series 15R-LX5 and 5,12,18R-triHEPE. These new compounds proved to be potent inhibitors of human polymorphonuclear leukocyte transendothelial migration and infiltration in vivo (ATL analogue > 5,12,18R-triHEPE > 18R-HEPE). Acetaminophen and indomethacin also permitted 18R-HEPE and 15R-HEPE generation with recombinant COX-2 as well as ω-5 and ω-9 oxygenations of other fatty acids that act on hematologic cells. These findings establish new transcellular routes for producing arrays of bioactive lipid mediators via COX-2–nonsteroidal antiinflammatory drug–dependent oxygenations and cell–cell interactions that impact microinflammation. The generation of these and related compounds provides a novel mechanism(s) for the therapeutic benefits of ω-3 dietary supplementation, which may be important in inflammation, neoplasia, and vascular diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease.

              Deficiency in docosahexaenoic acid (DHA), a brain-essential omega-3 fatty acid, is associated with cognitive decline. Here we report that, in cytokine-stressed human neural cells, DHA attenuates amyloid-beta (Abeta) secretion, an effect accompanied by the formation of NPD1, a novel, DHA-derived 10,17S-docosatriene. DHA and NPD1 were reduced in Alzheimer disease (AD) hippocampal cornu ammonis region 1, but not in the thalamus or occipital lobes from the same brains. The expression of key enzymes in NPD1 biosynthesis, cytosolic phospholipase A2 and 15-lipoxygenase, was altered in AD hippocampus. NPD1 repressed Abeta42-triggered activation of proinflammatory genes while upregulating the antiapoptotic genes encoding Bcl-2, Bcl-xl, and Bfl-1(A1). Soluble amyloid precursor protein-alpha stimulated NPD1 biosynthesis from DHA. These results indicate that NPD1 promotes brain cell survival via the induction of antiapoptotic and neuroprotective gene-expression programs that suppress Abeta42-induced neurotoxicity.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Immunology
                Nat Rev Immunol
                Springer Science and Business Media LLC
                1474-1733
                1474-1741
                May 2008
                May 2008
                : 8
                : 5
                : 349-361
                Article
                10.1038/nri2294
                2744593
                18437155
                f3b6e727-288d-49d0-8544-1af859fed03c
                © 2008

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article