22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Plant‐based Milks: A Review of the Science Underpinning Their Design, Fabrication, and Performance

      1 , 1 , 1
      Comprehensive Reviews in Food Science and Food Safety
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Protein content and amino acid composition of commercially available plant-based protein isolates

          The postprandial rise in essential amino acid (EAA) concentrations modulates the increase in muscle protein synthesis rates after protein ingestion. The EAA content and AA composition of the dietary protein source contribute to the differential muscle protein synthetic response to the ingestion of different proteins. Lower EAA contents and specific lack of sufficient leucine, lysine, and/or methionine may be responsible for the lower anabolic capacity of plant-based compared with animal-based proteins. We compared EAA contents and AA composition of a large selection of plant-based protein sources with animal-based proteins and human skeletal muscle protein. AA composition of oat, lupin, wheat, hemp, microalgae, soy, brown rice, pea, corn, potato, milk, whey, caseinate, casein, egg, and human skeletal muscle protein were assessed using UPLC–MS/MS. EAA contents of plant-based protein isolates such as oat (21%), lupin (21%), and wheat (22%) were lower than animal-based proteins (whey 43%, milk 39%, casein 34%, and egg 32%) and muscle protein (38%). AA profiles largely differed among plant-based proteins with leucine contents ranging from 5.1% for hemp to 13.5% for corn protein, compared to 9.0% for milk, 7.0% for egg, and 7.6% for muscle protein. Methionine and lysine were typically lower in plant-based proteins (1.0 ± 0.3 and 3.6 ± 0.6%) compared with animal-based proteins (2.5 ± 0.1 and 7.0 ± 0.6%) and muscle protein (2.0 and 7.8%, respectively). In conclusion, there are large differences in EAA contents and AA composition between various plant-based protein isolates. Combinations of various plant-based protein isolates or blends of animal and plant-based proteins can provide protein characteristics that closely reflect the typical characteristics of animal-based proteins.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Soy proteins: A review on composition, aggregation and emulsification

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Improving emulsion formation, stability and performance using mixed emulsifiers: A review

              The formation, stability, and performance of oil-in-water emulsions may be improved by using combinations of two or more different emulsifiers, rather than an individual type. This article provides a review of the physicochemical basis for the ability of mixed emulsifiers to enhance emulsion properties. Initially, an overview of the most important physicochemical properties of emulsifiers is given, and then the nature of emulsifier interactions in solution and at interfaces is discussed. The impact of using mixed emulsifiers on the formation and stability of emulsions is then reviewed. Finally, the impact of using mixed emulsifiers on the functional performance of emulsifiers is given, including gastrointestinal fate, oxidative stability, antimicrobial activity, and release characteristics. This information should facilitate the selection of combinations of emulsifiers that will have improved performance in emulsion-based products.
                Bookmark

                Author and article information

                Journal
                Comprehensive Reviews in Food Science and Food Safety
                Comprehensive Reviews in Food Science and Food Safety
                Wiley
                1541-4337
                1541-4337
                October 18 2019
                November 2019
                October 18 2019
                November 2019
                : 18
                : 6
                : 2047-2067
                Affiliations
                [1 ]Dept. of Food ScienceUniv. of Massachusetts Amherst Amherst MA 01003 U.S.A.
                Article
                10.1111/1541-4337.12505
                33336952
                f3bed5ca-db33-49a4-b96c-7e4542f46fbe
                © 2019

                http://onlinelibrary.wiley.com/termsAndConditions#am

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article