89
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A cross-sectional survey to establish Theileria parva prevalence and vector control at the wildlife-livestock interface, Northern Tanzania

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          East Coast fever (ECF) in cattle is caused by the protozoan parasite Theileria parva, transmitted by Rhipicephalus appendiculatus ticks. In cattle ECF is often fatal, causing annual losses >$500 million across its range. The African buffalo ( Syncerus caffer) is the natural host for T. parva but the transmission dynamics between wild hosts and livestock are poorly understood. This study aimed to determine the prevalence of T. parva in cattle, in a 30 km zone adjacent to the Serengeti National Park, Tanzania where livestock and buffalo co-exist, and to ascertain how livestock keepers controlled ECF and other vector-borne diseases of cattle.

          A randomised cross-sectional cattle survey and questionnaire of vector control practices were conducted. Blood samples were collected from 770 cattle from 48 herds and analysed by PCR to establish T. parva prevalence. Half body tick counts were recorded on every animal. Farmers were interviewed (n = 120; including the blood sampled herds) using a standardised questionnaire to obtain data on vector control practices. Local workshops were held to discuss findings and validate results.

          Overall prevalence of T. parva in cattle was 5.07% (CI: 3.70−7.00%), with significantly higher prevalence in older animals. Although all farmers reported seeing ticks on their cattle, tick counts were very low with 78% cattle having none. Questionnaire analysis indicated significant acaricide use with 79% and 41% of farmers reporting spraying or dipping with cypermethrin-based insecticides, respectively. Some farmers reported very frequent spraying, as often as every four days. However, doses per animal were often insufficient.

          These data indicate high levels of acaricide use, which may be responsible for the low observed tick burdens and low ECF prevalence. This vector control is farmer-led and aimed at both tick- and tsetse-borne diseases of livestock. The levels of acaricide use raise concerns regarding sustainability; resistance development is a risk, particularly in ticks. Integrating vaccination as part of this community-based disease control may alleviate acaricide dependence, but increased understanding of the Theileria strains circulating in wildlife-livestock interface areas is required to establish the potential benefits of vaccination.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          On a Cercopithifilaria sp. transmitted by Rhipicephalus sanguineus: a neglected, but widespread filarioid of dogs

          Background This study was aimed at investigating the distribution of a Cercopithifilaria sp. sensu Otranto et al., 2011 with dermal microfilariae recently identified in a dog from Sicily (Italy). A large epidemiological survey was conducted by examining skin samples (n = 917) and ticks (n = 890) collected from dogs at different time points in Italy, central Spain and eastern Greece. Results The overall prevalence of Cercopithifilaria sp. in the sampled animal populations was 13.9% and 10.5% by microscopy of skin sediments and by PCR on skin samples, respectively. Up to 21.6% and 45.5% of dogs in Spain were positive by microscopical examination and by PCR. Cumulative incidence rates ranging from 7.7% to 13.9% were estimated in dogs from two sites in Italy. A low level of agreement between the two diagnostic tests (microscopical examination and PCR) was recorded in sites where samples were processed in parallel. Infestation rate as determined by tick dissection (from 5.2% to 16.7%) was higher than that detected by PCR (from 0% to 3.9%); tick infestation was significantly associated with Cercopithifilaria sp. infestation in dogs from two out of four sites. Developing larvae found in ticks were morphometrically studied and as many as 1469 larvae were found in a single tick. Conclusions Our data suggest that, in addition to the most common species of filarioids known to infest dogs (i.e., Dirofilaria immitis, Dirofilaria repens and Acanthocheilonema reconditum), Cercopithifilaria sp. with dermal microfilariae should be considered due to its widespread distribution in southern Europe and high frequency in tick-exposed dogs.
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Mapping the Global Distribution of Livestock

            Livestock contributes directly to the livelihoods and food security of almost a billion people and affects the diet and health of many more. With estimated standing populations of 1.43 billion cattle, 1.87 billion sheep and goats, 0.98 billion pigs, and 19.60 billion chickens, reliable and accessible information on the distribution and abundance of livestock is needed for a many reasons. These include analyses of the social and economic aspects of the livestock sector; the environmental impacts of livestock such as the production and management of waste, greenhouse gas emissions and livestock-related land-use change; and large-scale public health and epidemiological investigations. The Gridded Livestock of the World (GLW) database, produced in 2007, provided modelled livestock densities of the world, adjusted to match official (FAOSTAT) national estimates for the reference year 2005, at a spatial resolution of 3 minutes of arc (about 5×5 km at the equator). Recent methodological improvements have significantly enhanced these distributions: more up-to date and detailed sub-national livestock statistics have been collected; a new, higher resolution set of predictor variables is used; and the analytical procedure has been revised and extended to include a more systematic assessment of model accuracy and the representation of uncertainties associated with the predictions. This paper describes the current approach in detail and presents new global distribution maps at 1 km resolution for cattle, pigs and chickens, and a partial distribution map for ducks. These digital layers are made publically available via the Livestock Geo-Wiki (http://www.livestock.geo-wiki.org), as will be the maps of other livestock types as they are produced.
              • Record: found
              • Abstract: found
              • Article: not found

              Serengeti wildebeest migratory patterns modeled from rainfall and new vegetation growth.

              We used evolutionary programming to model innate migratory pathways of wildebeest in the Serengeti Mara Ecosystem, Tanzania and Kenya. Wildebeest annually move from the southern short-grass plains of the Serengeti to the northern woodlands of the Mara. We used satellite images to create 12 average monthly and 180 10-day surfaces from 1998 to 2003 of percentage rainfall and new vegetation. The surfaces were combined in five additive and three multiplicative models, with the weightings on rainfall and new vegetation from 0% to 100%. Modeled wildebeest were first assigned random migration pathways. In simulated generations, animals best able to access rainfall and vegetation were retained, and they produced offspring with similar migratory pathways. Modeling proceeded until the best pathway was stable. In a learning phase, modeling continued with the ten-day images in the objective function. The additive model, influenced 25% by rainfall and 75% by vegetation growth, yielded the best agreement, with a multi-resolution comparison to observed densities yielding 76.8% of blocks in agreement (kappa = 0.32). Agreement was best for dry season and early wet season (kappa = 0.22-0.57), and poorest for the late wet season (0.04). The model suggests that new forage growth is a dominant correlate of wildebeest migration.

                Author and article information

                Contributors
                Journal
                Prev Vet Med
                Prev Vet Med
                Preventive Veterinary Medicine
                Elsevier Scientific Publishing
                0167-5877
                1873-1716
                1 November 2021
                November 2021
                : 196
                : 105491
                Affiliations
                [a ]Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
                [b ]Minstry of Livestock and Fisheries, Serengeti District Livestock Office, Mugumu, Tanzania
                [c ]Innogen Institute, Science Technology and Innovation Studies; School of Social and Political Science, University of Edinburgh, Old Surgeons’ Hall, High School Yards, Edinburgh, United Kingdom
                [d ]Tanzania Veterinary Laboratory Agency, Dar es Salaam, Tanzania
                [e ]Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
                [f ]Vector and Vector-borne Diseases Research Institute, Tanga, Tanzania
                [g ]Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, United Kingdom (Previously Epidemiology Research Unit, SRUC, Inverness, United Kingdom)
                Author notes
                [* ]Corresponding author. fionakallan@ 123456gmail.com
                Article
                S0167-5877(21)00235-X 105491
                10.1016/j.prevetmed.2021.105491
                8573586
                34562810
                f3cf78f6-f448-4773-b5f9-06b0dcc3489e
                © 2021 The Authors

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 9 March 2021
                : 2 September 2021
                : 9 September 2021
                Categories
                Article

                Veterinary medicine
                theileria parva,rhipicephalus appendiculatus,east coast fever,vector,acaricide,wildlife-livestock interface

                Comments

                Comment on this article

                Related Documents Log