25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Projected future impact of HPV vaccination and primary HPV screening on cervical cancer rates from 2017–2035: Example from Australia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Many countries are transitioning from cytology-based to longer-interval HPV screening. Trials comparing HPV-based screening to cytology report an increase in CIN2/3 detection at the first screen, and longer-term reductions in CIN3+; however, population level year-to-year transitional impacts are poorly understood. We undertook a comprehensive evaluation of switching to longer-interval primary HPV screening in the context of HPV vaccination. We used Australia as an example setting, since Australia will make this transition in December 2017.

          Methods

          Using a model of HPV vaccination, transmission, natural history and cervical screening, Policy1-Cervix, we simulated the planned transition from recommending cytology every two years for sexually-active women aged 18–20 to 69, to recommending HPV screening every five years for women aged 25–74 years. We estimated rates of CIN2/3, cervical cancer incidence, and mortality for each year from 2005 to 2035, considering ranges for HPV test accuracy and screening compliance in the context of HPV vaccination (current coverage ~82% in females; ~76% in males).

          Findings

          Transient increases are predicted to occur in rates of CIN2/3 detection and invasive cervical cancer in the first two to three years following the screening transition (of 16–24% and 11–14% in respectively, compared to 2017 rates). However, by 2035, CIN2/3 and invasive cervical cancer rates are predicted to fall by 40–44% and 42–51%, respectively, compared to 2017 rates. Cervical cancer mortality rates are predicted to remain unchanged until ~2020, then decline by 34–45% by 2035. Over the period 2018–2035, switching to primary HPV screening in Australia is expected to avert 2,006 cases of invasive cervical cancer and save 587 lives.

          Conclusions

          Transient increases in detected CIN2/3 and invasive cancer, which may be detectable at the population level, are predicted following a change to primary HPV screening. This is due to improved test sensitivity bringing forward diagnoses, resulting in longer term reductions in both cervical cancer incidence and mortality. Fluctuations in health outcomes due to the transition to a longer screening interval are predicted to occur for 10–15 years, but cervical cancer rates will be significantly reduced thereafter due to the impact of HPV vaccination and HPV screening. In order to maintain confidence in primary HPV screening through the transitional phase, it is important to widely communicate that an initial increase in CIN2/3 and perhaps even invasive cervical cancer is expected after a national transition to primary HPV screening, that this phenomenon is due to increased prevalent disease detection, and that this effect represents a marker of screening success.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial.

          Patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, two or more previous regimens of chemotherapy have a poor prognosis, and current guidelines do not recommend any specific treatments for these patients. We assessed the efficacy and safety of nivolumab, a fully human IgG4 monoclonal antibody inhibitor of programmed death-1 (PD-1), in patients with advanced gastric or gastro-oesophageal junction cancer who had been previously been treated with two or more chemotherapy regimens.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evidence regarding human papillomavirus testing in secondary prevention of cervical cancer.

            More than ever, clinicians need regularly updated reviews given the continuously increasing amount of new information regarding innovative cervical cancer prevention methods. A summary is given from recent meta-analyses and systematic reviews on 3 possible clinical applications of human papillomavirus (HPV) testing: triage of women with equivocal or low-grade cytologic abnormalities; prediction of the therapeutic outcome after treatment of cervical intraepithelial neoplasia (CIN) lesions, and last not but not least, primary screening for cervical cancer and pre-cancer. Consistent evidence is available indicating that HPV-triage with the Hybrid Capture(®) 2 assay (Qiagen Gaithersburg, Inc., MD, USA [previously Digene Corp.] (HC2) is more accurate (higher sensitivity, similar specificity) than repeat cytology to triage women with equivocal Pap smear results. Several other tests show at least similar accuracy but mRNA testing with the APTIMA(®) (Gen-Probe Inc., San Diego, CA, USA) test is similarly sensitive but more specific compared to HC2. In triage of low-grade squamous intraepithelial lesions (LSIL), HC2 is more sensitive but its specificity is substantially lower compared to repeat cytology. The APTIMA(®) test is more specific than HC2 without showing a loss in sensitivity. Identification of DNA of HPV types 16 and/or 18, or RNA from the five most carcinogenic HPV types allow selecting women at highest risk for CIN3+ but the sensitivity and negative predictive value of these markers are lower than full-range high-risk HPV (hrHPV) testing. After conservative treatment of cervical pre-cancer, HPV testing picks up more quickly, with higher sensitivity and not lower specificity, residual or recurrent high-grade CIN than follow-up cytology. Primary screening for hrHPV generally detects more CIN2, CIN3 or cancer compared to cytology at cut-off atypical squamous cells of undetermined significance (ASC-US) or LSIL, but is less specific. Combined HPV and cytology screening provides a further small gain in sensitivity at the expense of a considerable loss in specificity if positive by either test is referred to colposcopy, in comparison with HPV testing only. Randomised trials and follow-up of cohort studies consistently demonstrate a significantly lower cumulative incidence of CIN3+ and even of cancer, in women aged 30 years or older, who were at enrollment hrHPV DNA negative compared to those who were cytologically negative. The difference in cumulative risk of CIN3+ or cancer for double negative (cytology & HPV) versus only HPV-negative women is small. HC2, GP5+/6+ PCR (polymerase chain reaction), cobas(®) 4800 PCR (Roche Molecular Systems Inc., Alameda, CA, USA) and Real Time PCR (Abbott Molecular, Des Plaines, IL, USA) can be considered as clinically validated for use in primary screening. The loss in specificity associated with primary HPV-based screening can be compensated by appropriate algorithms involving reflex cytology and/or HPV genotyping for HPV16 or 18. There exists a substantial evidence base to support that HPV testing is advantageous both in triage of women with equivocal abnormal cytology, in surveillance after treatment of CIN lesions and in primary screening of women aged 30 years or older. However, the possible advantages offered by HPV-based screening require a well organised program with good compliance with screening and triage policies. This article forms part of a special supplement entitled "Comprehensive Control of HPV Infections and Related Diseases" Vaccine Volume 30, Supplement 5, 2012. Copyright © 2012 Marc Arbyn. Published by Elsevier Ltd.. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Population-level impact and herd effects following human papillomavirus vaccination programmes: a systematic review and meta-analysis.

              Human papillomavirus (HPV) vaccination programmes were first implemented in several countries worldwide in 2007. We did a systematic review and meta-analysis to assess the population-level consequences and herd effects after female HPV vaccination programmes, to verify whether or not the high efficacy reported in randomised controlled clinical trials are materialising in real-world situations. We searched the Medline and Embase databases (between Jan 1, 2007 and Feb 28, 2014) and conference abstracts for time-trend studies that analysed changes, between the pre-vaccination and post-vaccination periods, in the incidence or prevalence of at least one HPV-related endpoint: HPV infection, anogenital warts, and high-grade cervical lesions. We used random-effects models to derive pooled relative risk (RR) estimates. We stratified all analyses by age and sex. We did subgroup analyses by comparing studies according to vaccine type, vaccination coverage, and years since implementation of the vaccination programme. We assessed heterogeneity across studies using I(2) and χ(2) statistics and we did trends analysis to examine the dose-response association between HPV vaccination coverage and each study effect measure. We identified 20 eligible studies, which were all undertaken in nine high-income countries and represent more than 140 million person-years of follow-up. In countries with female vaccination coverage of at least 50%, HPV type 16 and 18 infections decreased significantly between the pre-vaccination and post-vaccination periods by 68% (RR 0·32, 95% CI 0·19-0·52) and anogenital warts decreased significantly by 61% (0·39, 0·22-0·71) in girls 13-19 years of age. Significant reductions were also recorded in HPV types 31, 33, and 45 in this age group of girls (RR 0·72, 95% CI 0·54-0·96), which suggests cross-protection. Additionally, significant reductions in anogenital warts were also reported in boys younger than 20 years of age (0·66 [95% CI 0·47-0·91]) and in women 20-39 years of age (0·68 [95% CI 0·51-0·89]), which suggests herd effects. In countries with female vaccination coverage lower than 50%, significant reductions in HPV types 16 and 18 infection (RR 0·50, 95% CI 0·34-0·74]) and in anogenital warts (0·86 [95% CI 0·79-0·94]) occurred in girls younger than 20 years of age, with no indication of cross-protection or herd effects. Our results are promising for the long-term population-level effects of HPV vaccination programmes. However, continued monitoring is essential to identify any signals of potential waning efficacy or type-replacement. The Canadian Institutes of Health Research. Copyright © 2015 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Formal analysisRole: InvestigationRole: MethodologyRole: SoftwareRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: Formal analysisRole: InvestigationRole: MethodologyRole: SoftwareRole: Writing – review & editing
                Role: Formal analysisRole: InvestigationRole: MethodologyRole: SoftwareRole: Writing – review & editing
                Role: Formal analysisRole: InvestigationRole: MethodologyRole: SoftwareRole: Writing – review & editing
                Role: ConceptualizationRole: Writing – review & editing
                Role: ConceptualizationRole: Formal analysisRole: Funding acquisitionRole: InvestigationRole: MethodologyRole: Project administrationRole: ResourcesRole: SoftwareRole: SupervisionRole: Writing – original draftRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                14 February 2018
                2018
                : 13
                : 2
                : e0185332
                Affiliations
                [1 ] Cancer Research Division, Cancer Council NSW, Sydney, Australia
                [2 ] School of Public Health, University of Sydney, Sydney, Australia
                [3 ] Victorian Cytology Service Ltd., Melbourne, Australia
                [4 ] Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Australia
                Universidade Estadual de Maringa, BRAZIL
                Author notes

                Competing Interests: Karen Canfell and Marion Saville are both co-PI’s of an investigator-initiated trial of cytology and primary HPV screening in Australia (‘Compass’) (ACTRN12613001207707 and NCT02328872), which is conducted and funded by the Victorian Cytology Service (VCS) Inc Ltd., a government-funded health promotion charity. The VCS Inc Ltd. have received equipment and a funding contribution for the Compass trial from Roche Molecular Systems and Ventana Inc USA. KC and Marion Saville are CI’s on Compass in New Zealand, (‘Compass NZ’) (ACTRN12614000714684) which is conducted and funded by Diagnostic Medlab, now Auckland District Health Board. DML received an equipment and a funding contribution for the Compass trial from Roche Molecular Systems. However neither KC, nor her institution on her behalf (Cancer Council NSW) receive direct or indirect funding from industry for Compass Australia or NZ or any other project. This does not alter our adherence to PLOS ONE policies on sharing data and materials.

                Author information
                http://orcid.org/0000-0002-8989-1449
                Article
                PONE-D-17-22983
                10.1371/journal.pone.0185332
                5812553
                29444073
                f3d878aa-8f2b-4af0-8099-576a28ad7d75
                © 2018 Hall et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 16 June 2017
                : 11 September 2017
                Page count
                Figures: 6, Tables: 2, Pages: 19
                Funding
                The development of the model used in this evaluation was funded by a range of sources including the National Health and Medical Research Council (project grants APP1065892, APP440200 and APP1007518), the Medical Services Advisory Committee, Department of Health Australia, Cancer Council Australia and Cancer Council NSW, the New Zealand Ministry of Health and the United Kingdom Health Technologies Assessment (HTA). Karen Canfell also receives salary support from the National Health and Medical Research Council (NHMRC) Australia (CDF APP1082989). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and life sciences
                Organisms
                Viruses
                DNA viruses
                Papillomaviruses
                Human Papillomavirus
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Viral Pathogens
                Papillomaviruses
                Human Papillomavirus
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Viral Pathogens
                Papillomaviruses
                Human Papillomavirus
                Biology and Life Sciences
                Organisms
                Viruses
                Viral Pathogens
                Papillomaviruses
                Human Papillomavirus
                Medicine and Health Sciences
                Oncology
                Cancers and Neoplasms
                Gynecological Tumors
                Cervical Cancer
                Biology and Life Sciences
                Immunology
                Vaccination and Immunization
                Medicine and Health Sciences
                Immunology
                Vaccination and Immunization
                Medicine and Health Sciences
                Public and Occupational Health
                Preventive Medicine
                Vaccination and Immunization
                Medicine and Health Sciences
                Diagnostic Medicine
                Cancer Detection and Diagnosis
                Cancer Screening
                Medicine and Health Sciences
                Oncology
                Cancer Detection and Diagnosis
                Cancer Screening
                Biology and Life Sciences
                Population Biology
                Population Metrics
                Death Rates
                Medicine and Health Sciences
                Urology
                Genitourinary Infections
                Human Papillomavirus Infection
                Medicine and Health Sciences
                Infectious Diseases
                Sexually Transmitted Diseases
                Human Papillomavirus Infection
                Medicine and Health Sciences
                Infectious Diseases
                Viral Diseases
                Human Papillomavirus Infection
                Medicine and Health Sciences
                Public and Occupational Health
                Health Screening
                Biology and Life Sciences
                Cell Biology
                Cytology
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article