10
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Glycosaminoglycan Compositional Analysis of Relevant Tissues in ZIKV Pathogenesis and in vitro Evaluation of Heparin as Antiviral Against ZIKV Infection

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Zika virus (ZIKV) is an enveloped RNA virus from the flavivirus family that can cause fetal neural abnormalities in pregnant women. Previously, we established that ZIKV-EP (envelope protein) binds to human placental chondroitin sulfate (CS), suggesting that CS may be a potential host cell surface receptor in ZIKV pathogenesis. In this study, we further characterized the GAG disaccharide composition of other biological tissues (i.e., mosquitoes, fetal brain cells, and eye tissues) in ZIKV pathogenesis to investigate the role of tissue specific GAGs. Heparan sulfate (HS) was the major GAG, and levels of HS-6-sulfo, HS 0S (unsulfated HS), and CS 4S disaccharides were the main differences in the GAG composition of Aedes aegypti and Aedes albopictus mosquitoes. In human fetal neural progenitor and differentiated cells, HS 0S and CS 4S were the main disaccharides. A change in disaccharide composition levels was observed between undifferentiated and differentiated cells. In different regions of the bovine eyes, CS was the major GAG, and the amounts of hyaluronic acid or keratan sulfate varied depending on the region of the eye. Next, we examined heparin (HP) of various structures to investigate their potential in vitro antiviral activity against ZIKV and Dengue virus (DENV) infection in Vero cells. All compounds effectively inhibited DENV replication; however, they surprisingly promoted ZIKV replication. HP of longer chain lengths more strongly promoted activity in ZIKV replication. This study further expands our understanding of role of GAGs in ZIKV pathogenesis and carbohydrate-based antivirals against flaviviral infection.

          Related collections

          Author and article information

          Journal
          Biochemistry
          Biochemistry
          American Chemical Society (ACS)
          0006-2960
          1520-4995
          January 30 2019
          January 30 2019
          Article
          10.1021/acs.biochem.8b01267
          7686953
          30698412
          f3dca3fb-9ecc-4014-99d1-14048f579e6d
          © 2019
          History

          Comments

          Comment on this article