299
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A meta-analysis of changes in bacterial and archaeal communities with time

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ecologists have long studied the temporal dynamics of plant and animal communities with much less attention paid to the temporal dynamics exhibited by microbial communities. As a result, we do not know if overarching temporal trends exist for microbial communities or if changes in microbial communities are generally predictable with time. Using microbial time series assessed via high-throughput sequencing, we conducted a meta-analysis of temporal dynamics in microbial communities, including 76 sites representing air, aquatic, soil, brewery wastewater treatment, human- and plant-associated microbial biomes. We found that temporal variability in both within- and between-community diversity was consistent among microbial communities from similar environments. Community structure changed systematically with time in less than half of the cases, and the highest rates of change were observed within ranges of 1 day to 1 month for all communities examined. Microbial communities exhibited species–time relationships (STRs), which describe the accumulation of new taxa to a community, similar to those observed previously for plant and animal communities, suggesting that STRs are remarkably consistent across a broad range of taxa. These results highlight that a continued integration of microbial ecology into the broader field of ecology will provide new insight into the temporal patterns of microbial and ‘macro'-bial communities alike.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          The diversity and biogeography of soil bacterial communities.

          For centuries, biologists have studied patterns of plant and animal diversity at continental scales. Until recently, similar studies were impossible for microorganisms, arguably the most diverse and abundant group of organisms on Earth. Here, we present a continental-scale description of soil bacterial communities and the environmental factors influencing their biodiversity. We collected 98 soil samples from across North and South America and used a ribosomal DNA-fingerprinting method to compare bacterial community composition and diversity quantitatively across sites. Bacterial diversity was unrelated to site temperature, latitude, and other variables that typically predict plant and animal diversity, and community composition was largely independent of geographic distance. The diversity and richness of soil bacterial communities differed by ecosystem type, and these differences could largely be explained by soil pH (r(2) = 0.70 and r(2) = 0.58, respectively; P < 0.0001 in both cases). Bacterial diversity was highest in neutral soils and lower in acidic soils, with soils from the Peruvian Amazon the most acidic and least diverse in our study. Our results suggest that microbial biogeography is controlled primarily by edaphic variables and differs fundamentally from the biogeography of "macro" organisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microbial biogeography: putting microorganisms on the map.

            We review the biogeography of microorganisms in light of the biogeography of macroorganisms. A large body of research supports the idea that free-living microbial taxa exhibit biogeographic patterns. Current evidence confirms that, as proposed by the Baas-Becking hypothesis, 'the environment selects' and is, in part, responsible for spatial variation in microbial diversity. However, recent studies also dispute the idea that 'everything is everywhere'. We also consider how the processes that generate and maintain biogeographic patterns in macroorganisms could operate in the microbial world.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Fundamentals of Microbial Community Resistance and Resilience

              Microbial communities are at the heart of all ecosystems, and yet microbial community behavior in disturbed environments remains difficult to measure and predict. Understanding the drivers of microbial community stability, including resistance (insensitivity to disturbance) and resilience (the rate of recovery after disturbance) is important for predicting community response to disturbance. Here, we provide an overview of the concepts of stability that are relevant for microbial communities. First, we highlight insights from ecology that are useful for defining and measuring stability. To determine whether general disturbance responses exist for microbial communities, we next examine representative studies from the literature that investigated community responses to press (long-term) and pulse (short-term) disturbances in a variety of habitats. Then we discuss the biological features of individual microorganisms, of microbial populations, and of microbial communities that may govern overall community stability. We conclude with thoughts about the unique insights that systems perspectives – informed by meta-omics data – may provide about microbial community stability.
                Bookmark

                Author and article information

                Journal
                ISME J
                ISME J
                The ISME Journal
                Nature Publishing Group
                1751-7362
                1751-7370
                August 2013
                11 April 2013
                1 August 2013
                : 7
                : 8
                : 1493-1506
                Affiliations
                [1 ]Department of Molecular, Cellular and Developmental Biology, Yale University , New Haven, CT, USA
                [2 ]Department of Computer Science, Northern Arizona University , Flagstaff, AZ, USA
                [3 ]Argonne National Laboratory , Argonne, IL, USA
                [4 ]Department of Chemistry and Biochemistry and Biofrontiers Institute, University of Colorado , Boulder, CO, USA
                [5 ]Howard Hughes Medical Institute , Boulder, CO, USA
                [6 ]Cooperative Institute for Research in Environmental Sciences, University of Colorado , Boulder, CO, USA
                [7 ]Department of Ecology and Evolutionary Biology, University of Colorado , Boulder, CO, USA
                Author notes
                [* ]University of Colorado, Cooperative Institute for Research in Environmental Sciences , 216 UCB, Boulder, CO 80309-0216, USA. E-mail: noah.fierer@ 123456colorado.edu
                Article
                ismej201354
                10.1038/ismej.2013.54
                3721121
                23575374
                f3df35f7-e6de-4393-9915-bfa52e3ec1a3
                Copyright © 2013 International Society for Microbial Ecology

                This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

                History
                : 26 November 2012
                : 22 February 2013
                : 26 February 2013
                Categories
                Original Article

                Microbiology & Virology
                similarity-decay,species–time relationship,beta diversity,16s rrna,turnover,high-throughput sequencing

                Comments

                Comment on this article