11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Laminin α4 overexpression in the anterior lens capsule may contribute to the senescence of human lens epithelial cells in age-related cataract

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Senescence is a leading cause of age-related cataract (ARC). The current study indicated that the senescence-associated protein, p53, total laminin (LM), LMα4, and transforming growth factor-beta1 (TGF-β1) in the cataractous anterior lens capsules (ALCs) increase with the grades of ARC. In cataractous ALCs, patient age, total LM, LMα4, TGF-β1, were all positively correlated with p53. In lens epithelial cell (HLE B-3) senescence models, matrix metalloproteinase-9 (MMP-9) alleviated senescence by decreasing the expression of total LM and LMα4; TGF-β1 induced senescence by increasing the expression of total LM and LMα4. Furthermore, MMP-9 silencing increased p-p38 and LMα4 expression; anti-LMα4 globular domain antibody alleviated senescence by decreasing the expression of p-p38 and LMα4; pharmacological inhibition of p38 MAPK signaling alleviated senescence by decreasing the expression of LMα4. Finally, in cataractous ALCs, positive correlations were found between LMα4 and total LM, as well as between LMα4 and TGF-β1. Taken together, our results implied that the elevated LMα4, which was possibly caused by the decreased MMP-9, increased TGF-β1 and activated p38 MAPK signaling during senescence, leading to the development of ARC. LMα4 and its regulatory factors show potential as targets for drug development for prevention and treatment of ARC.

          Related collections

          Most cited references92

          • Record: found
          • Abstract: found
          • Article: not found

          Age-related nuclear cataract-oxidation is the key.

          Age is by far the biggest risk factor for cataract, and it is sometimes assumed that cataract is simply an amplification of this aging process. This appears not to be the case, since the lens changes associated with aging and cataract are distinct. Oxidation is the hallmark of age-related nuclear (ARN) cataract. Loss of protein sulfhydryl groups, and the oxidation of methionine residues, are progressive and increase as the cataract worsens until >90% of cysteine and half the methionine residues are oxidised in the most advanced form. By contrast, there may be no significant oxidation of proteins in the centre of the lens with advancing age, even past age 80. The key factor in preventing oxidation seems to be the concentration of nuclear glutathione (GSH). Provided that nuclear GSH levels can be maintained above 2 mm, it appears that significant protein oxidation and posttranslational modification by reactive small molecules, such as ascorbate or UV filter degradation products, is not observed. Adequate coupling of the metabolically-active cortex, the source of antioxidants such as GSH, to the quiescent nucleus, is crucial especially since it would appear that the cortex remains viable in old lenses, and even possibly in ARN cataract lenses. Therefore it is vital to understand the reason for the onset of the lens barrier. This barrier, which becomes apparent in middle age, acts to impede the flow of small molecules between the cortex and the nucleus. The barrier, rather than nuclear compaction (which is not observed in human lenses), may contribute to the lowered concentration of GSH in the lens nucleus after middle age. By extending the residence time within the lens centre, the barrier also facilitates the decomposition of intrinsically unstable metabolites and may exacerbate the formation of H(2)O(2) in the nucleus. This hypothesis, which is based on the generation of reactive oxygen species and reactive molecules within the nucleus itself, shifts the focus away from theories for cataract that postulated a primary role for oxidants generated outside of the lens. Unfortunately, due to marked variability in the lenses of different species, there appears at present to be no ideal animal model system for studying human ARN cataract.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oxidative stress-induced cataract: mechanism of action.

            This review examines the hypothesis that oxidative stress is an initiating factor for the development of maturity onset cataract and describes the events leading to lens opacification. Data are reviewed that indicate that extensive oxidation of lens protein and lipid is associated with human cataract found in older individuals whereas little oxidation (and only in membrane components) is found in control subjects of similar age. A significant proportion of lenses and aqueous humor taken from cataract patients have elevated H2O2 levels. Because H2O2, at concentrations found in cataract, can cause lens opacification and produces a pattern of oxidation similar to that found in cataract, it is concluded that H2O2 is the major oxidant involved in cataract formation. This viewpoint is further supported by experiments showing that cataract formation in organ culture caused by photochemically generated superoxide radical, H2O2, and hydroxyl radical is completely prevented by the addition of a GSH peroxidase mimic. The damage caused by oxidative stress does not appear to be reversible and there is an inverse relationship between the stress period and the time required for loss of transparency and degeneration of biochemical parameters such as ATP, GPD, nonprotein thiol, and hydration. After exposure to oxidative stress, the redox set point of the single layer of the lens epithelial cells (but not the remainder of the lens) quickly changes, going from a strongly reducing to an oxidizing environment. Almost concurrent with this change is extensive damage to DNA and membrane pump systems, followed by loss of epithelial cell viability and death by necrotic and apoptotic mechanisms. The data suggest that the epithelial cell layer is the initial site of attack by oxidative stress and that involvement of the lens fibers follows, leading to cortical cataract.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cellular senescence: a link between cancer and age-related degenerative disease?

              Cellular senescence is an established cellular stress response that acts primarily to prevent the proliferation of cells that experience potentially oncogenic stress. In recent years, it has become increasingly apparent that the senescence response is a complex phenotype, which has a variety of cell non-autonomous effects. The senescence-associated secretory phenotype, or SASP, entails the secretion of numerous cytokines, growth factors and proteases. The SASP can have beneficial or detrimental effects, depending on the physiological context. One recently described beneficial effect is to aid tissue repair. Among the detrimental effects, the SASP can disrupt normal tissue structures and function, and, ironically, can promote malignant phenotypes in nearby cells. These detrimental effects in many ways recapitulate the degenerative and hyperplastic pathologies that develop during aging. Because the SASP is largely a response to genomic or epigenomic damage, we suggest it may be a model for a cellular damage response that can propagate damage signals both within and among tissues. We propose that both the degenerative and hyperplastic diseases of aging may be fueled by such damage signals. Copyright © 2011 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Aging (Albany NY)
                Aging (Albany NY)
                Aging
                Aging (Albany NY)
                Impact Journals
                1945-4589
                15 May 2019
                10 May 2019
                : 11
                : 9
                : 2699-2723
                Affiliations
                [1 ]Eye Hospital, First Affiliated Hospital, Harbin Medical University , Harbin 150001, , China
                [2 ]Department of Pharmacology, College of Pharmacy, Harbin Medical University, and Heilongjiang Academy of Medical Sciences , Harbin 150081, , China
                [3 ]Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Lab , Beijing 100000, , China
                [4 ]Department of Neurobiology, Neurobiology Key Laboratory, Harbin Medical University , Harbin 150081, , China
                Author notes
                Correspondence to: Ping Liu; email: liuping2017lq@ 123456163.com
                Correspondence to: Xianling Tang; email: tangxianling@ 123456163.com
                Article
                101943
                10.18632/aging.101943
                6535067
                31076560
                f3ee0483-6a6a-49a5-8ec0-615abcb025fd
                Copyright © 2019 Yan et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution (CC BY) 3.0 License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 06 November 2018
                : 27 April 2019
                Categories
                Research Paper

                Cell biology
                age-related cataract,anterior lens capsule,laminin α4,human lens epithelial cell,senescence,basement membrane

                Comments

                Comment on this article