5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Subcellular Patch-clamp Recordings from the Somatodendritic Domain of Nigral Dopamine Neurons

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dendrites of dopaminergic neurons receive and convey synaptic input, support action potential back-propagation and neurotransmitter release. Understanding these fundamental functions will shed light on the information transfer in these neurons. Dendritic patch-clamp recordings provide the possibility to directly examine the electrical properties of dendrites and underlying voltage-gated ion channels. However, these fine structures are not easily accessible to patch pipettes because of their small diameter. This report describes a step-by-step procedure to collect stable and reliable recordings from the dendrites of dopaminergic neurons in acute slices. Electrophysiological measurements are combined with post hoc recovery of cell morphology. Successful experiments rely on improved preparation of slices, solutions and pipettes, adequate adjustment of the optics and stability of the pipette in contact with the recorded structure. Standard principles of somatic patch-clamp recording are applied to dendrites but with a gentler approach of the pipette. These versatile techniques can be implemented to address various questions concerning the excitable properties of dendrites.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          Dendritic computation.

          One of the central questions in neuroscience is how particular tasks, or computations, are implemented by neural networks to generate behavior. The prevailing view has been that information processing in neural networks results primarily from the properties of synapses and the connectivity of neurons within the network, with the intrinsic excitability of single neurons playing a lesser role. As a consequence, the contribution of single neurons to computation in the brain has long been underestimated. Here we review recent work showing that neuronal dendrites exhibit a range of linear and nonlinear mechanisms that allow them to implement elementary computations. We discuss why these dendritic properties may be essential for the computations performed by the neuron and the network and provide theoretical and experimental examples to support this view.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition.

            The temporal resolution of neuronal integration depends on the time window within which excitatory inputs summate to reach the threshold for spike generation. Here, we show that in rat hippocampal pyramidal cells this window is very narrow (less than 2 milliseconds). This narrowness results from the short delay with which disynaptic feed-forward inhibition follows monosynaptic excitation. Simultaneous somatic and dendritic recordings indicate that feed-forward inhibition is much stronger in the soma than in the dendrites, resulting in a broader integration window in the latter compartment. Thus, the subcellular partitioning of feed-forward inhibition enforces precise coincidence detection in the soma, while allowing dendrites to sum incoming activity over broader time windows.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dendritic excitability and synaptic plasticity.

              Most synaptic inputs are made onto the dendritic tree. Recent work has shown that dendrites play an active role in transforming synaptic input into neuronal output and in defining the relationships between active synapses. In this review, we discuss how these dendritic properties influence the rules governing the induction of synaptic plasticity. We argue that the location of synapses in the dendritic tree, and the type of dendritic excitability associated with each synapse, play decisive roles in determining the plastic properties of that synapse. Furthermore, since the electrical properties of the dendritic tree are not static, but can be altered by neuromodulators and by synaptic activity itself, we discuss how learning rules may be dynamically shaped by tuning dendritic function. We conclude by describing how this reciprocal relationship between plasticity of dendritic excitability and synaptic plasticity has changed our view of information processing and memory storage in neuronal networks.
                Bookmark

                Author and article information

                Journal
                J Vis Exp
                J Vis Exp
                JoVE
                Journal of Visualized Experiments : JoVE
                MyJove Corporation
                1940-087X
                2016
                2 November 2016
                2 November 2016
                : 117
                : 54601
                Affiliations
                1GIGA-Neurosciences, Quartier Hôpital, University of Liege
                Author notes

                Correspondence to: Dominique Engel at dominique.engel@ 123456ulg.ac.be

                Article
                54601
                10.3791/54601
                5226116
                27842379
                f3f4e05f-2ff9-43fa-b5ee-23edd20bedc8
                Copyright © 2016, Journal of Visualized Experiments

                This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

                History
                Categories
                Neuroscience

                Uncategorized
                neuroscience,issue 117,dendrite,patch-clamp,dual recordings,cell-attached,biocytin labeling,neuronal morphology,substantia nigra,dopaminergic neuron,ion channel

                Comments

                Comment on this article