26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Manipulation of visual biofeedback during gait with a time delayed adaptive Virtual Mirror Box

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          A mirror placed in the mid-sagittal plane of the body has been used to reduce phantom limb pain and improve movement function in medical conditions characterised by asymmetrical movement control. The mirrored illusion of unimpaired limb movement during gait might enhance the effect, but a physical mirror is only capable of showing parallel movement of limbs in real time typically while sitting. We aimed to overcome the limitations of physical mirrors by developing and evaluating a Virtual Mirror Box which delays the mirrored image of limbs during gait to ensure temporal congruency with the impaired physical limb.

          Methods

          An application was developed in the CAREN system’s D-Flow software which mirrors selected limbs recorded by real-time motion capture to the contralateral side. To achieve phase shifted movement of limbs during gait, the mirrored virtual limbs are also delayed by a continuously calculated amount derived from past gait events. In order to accommodate non-normal proportions and offsets of pathological gait, the movements are morphed so that the physical and virtual contact events match on the mirrored side. Our method was tested with a trans-femoral amputee walking on a treadmill using his artificial limb. Joint angles of the elbow and knee were compared between the intact and mirrored side using cross correlation, root mean squared difference and correlation coefficients.

          Results

          The time delayed adaptive virtual mirror box produced a symmetrical looking gait of the avatar coupled with a reduction of the difference between the intact and virtual knee and elbow angles (10.86° and 5.34° reduced to 4.99° and 2.54° respectively). Dynamic morphing of the delay caused a non-significant change of toe-off events when compared to delaying by 50% of the previous gait cycle, as opposed to the initial contact events which showed a practically negligible but statistically significant increase (p < 0.05).

          Conclusions

          Adding an adaptive time delay to the Virtual Mirror Box has extended its use to treadmill gait, for the first time. Dynamic morphing resulted in a compromise between mirrored movement of the intact side and gait events of the virtual limbs matched with physical events of the impaired side. Asymmetrical but repeatable gait is expected to provide even more faithful mirroring.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Two simple methods for determining gait events during treadmill and overground walking using kinematic data.

          The determination of gait events such as heel strike and toe-off provide the basis for defining stance and swing phases of gait cycles. Two algorithms for determining event times for treadmill and overground walking based solely on kinematic data are presented. Kinematic data from treadmill walking trials lasting 20-45s were collected from three subject populations (healthy young, n=7; multiple sclerosis, n=7; stroke, n=4). Overground walking trials consisted of approximately eight successful passes over two force plates for a healthy subject population (n=5). Time of heel strike and toe-off were determined using the two new computational techniques and compared to events detected using vertical ground reaction force (GRF) as a gold standard. The two algorithms determined 94% of the treadmill events from healthy subjects within one frame (0.0167s) of the GRF events. In the impaired populations, 89% of treadmill events were within two frames (0.0334s) of the GRF events. For overground trials, 98% of events were within two frames. Automatic event detection from the two kinematic-based algorithms will aid researchers by accurately determining gait events during the analysis of treadmill and overground walking.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Synaesthesia in phantom limbs induced with mirrors.

            Although there is a vast clinical literature on phantom limbs, there have been no experimental studies on the effects of visual input on phantom sensations. We introduce an inexpensive new device--a 'virtual reality box'--to resurrect the phantom visually to study inter-sensory effects. A mirror is placed vertically on the table so that the mirror reflection of the patient's intact had is 'superimposed' on the felt position of the phantom. We used this procedure on ten patients and found the following results. 1. In six patients, when the normal hand was moved, so that the phantom was perceived to move in the mirror, it was also felt to move; i.e. kinesthetic sensations emerged in the phantom. In D.S. this effect occurred even though he had never experienced any movements in the phantom for ten years before we tested him. He found the return of sensations very enjoyable. 2. Repeated practice led to a permanent 'disappearance' of the phantom arm in patient D.S. and the hand became telescoped into the stump near the shoulder. 3. Using an optical trick, impossible postures--e.g. extreme hyperextension of the fingers--could be induced visually in the phantom. In one case this was felt as a transient 'painful tug' in the phantom. 4. Five patients experienced involuntary painful 'clenching spasms' in the phantom hand and in four of them the spasms were relieved when the mirror was used to facilitate 'opening' of the phantom hand; opening was not possible without the mirror. 5. In three patients, touching the normal hand evoked precisely localized touch sensations in the phantom. Interestingly, the referral was especially pronounced when the patients actually 'saw' their phantom being touched in the mirror. Indeed, in a fourth patient (R.L.) the referral occurred only if he saw his phantom being touched: a curious form of synaesthesia. These experiments lend themselves readily to imaging studies using PET and fMRI. Taken collectively, they suggest that there is a considerable amount of latent plasticity even in the adult human brain. For example, precisely organized new pathways, bridging the two cerebral hemispheres, can emerge in less than three weeks. Furthermore, there must be a great deal of back and forth interaction between vision and touch, so that the strictly modular, hierarchical model of the brain that is currently in vogue needs to be replaced with a more dynamic, interactive model, in which 're-entrant' signalling plays the main role.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Mirror therapy for phantom limb pain.

                Bookmark

                Author and article information

                Contributors
                Journal
                J Neuroeng Rehabil
                J Neuroeng Rehabil
                Journal of NeuroEngineering and Rehabilitation
                BioMed Central
                1743-0003
                2014
                10 June 2014
                : 11
                : 101
                Affiliations
                [1 ]Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom Street, Liverpool L3 3AF, United Kingdom
                [2 ]School of Engineering, Design & Technology, University of Bradford, Bradford, United Kingdom
                [3 ]Motek Medical B.V., Amsterdam, The Netherlands
                Article
                1743-0003-11-101
                10.1186/1743-0003-11-101
                4077263
                24917329
                f3fd5784-4bd7-4a8d-bc90-9f6e1a756171
                Copyright © 2014 Barton et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

                History
                : 18 July 2013
                : 2 June 2014
                Categories
                Methodology

                Neurosciences
                virtual reality,mirror box,rehabilitation,gait,amputees,phantom limb pain,stroke,cerebral palsy,complex regional pain syndrome

                Comments

                Comment on this article