39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Biosynthesis and secretion of plant cuticular wax.

      Progress in Lipid Research
      Arabidopsis, genetics, metabolism, ultrastructure, Genes, Plant, Lipids, biosynthesis, Plant Epidermis, Waxes

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The cuticle covers the aerial portions of land plants. It consists of amorphous intracuticular wax embedded in cutin polymer, and epicuticular wax crystalloids that coat the outer plant surface and impart a whitish appearance. Cuticular wax is mainly composed of long-chain aliphatic compounds derived from very long chain fatty acids. Wax biosynthesis begins with fatty acid synthesis in the plastid. Here we focus on fatty acid elongation (FAE) to very long chains (C24-C34), and the subsequent processing of these elongated products into alkanes, secondary alcohols, ketones, primary alcohols and wax esters. The identity of the gene products involved in these processes is starting to emerge. Other areas of this field remain enigmatic. For example, it is not known how the hydrophobic wax components are moved intracellularly, how they are exported out of the cell, or translocated through the hydrophilic cell wall. Two hypotheses are presented for intracellular wax transport: direct transfer of lipids from the endoplasmic reticulum to the plasma membrane, and Golgi mediated exocytosis. The potential roles of ABC transporters and non-specific lipid transfer proteins in wax export are also discussed. Biochemical-genetic and genomic approaches in Arabidopsis thaliana promise to be particularly useful in identifying and characterizing gene products involved in wax biosynthesis, secretion and function. The current review will, therefore, focus on Arabidopsis as a model for studying these processes.

          Related collections

          Author and article information

          Journal
          12467640
          10.1016/s0163-7827(02)00045-0

          Chemistry
          Arabidopsis,genetics,metabolism,ultrastructure,Genes, Plant,Lipids,biosynthesis,Plant Epidermis,Waxes
          Chemistry
          Arabidopsis, genetics, metabolism, ultrastructure, Genes, Plant, Lipids, biosynthesis, Plant Epidermis, Waxes

          Comments

          Comment on this article