42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cardiovascular Effects of Salvianolic Acid B

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Salvianolic acid B (SAB, Sal B) is the representative component of phenolic acids derived from the dried root and rhizome of Salvia miltiorrhiza Bge (Labiatae) which has been used widely and successfully in Asian countries for clinical therapy of various vascular disturbance-related diseases for hundreds of years. However, its exact cardioprotective components and the underlying mechanism for therapeutic basis are still poorly understood. This paper discussed and elucidated the underlying biological mechanisms and pharmacology of Sal B and their potential cardioprotective effects.

          Related collections

          Most cited references94

          • Record: found
          • Abstract: found
          • Article: not found

          Ameliorating effects of compounds derived from Salvia miltiorrhiza root extract on microcirculatory disturbance and target organ injury by ischemia and reperfusion.

          Ischemia and reperfusion (I/R) exerts multiple insults in microcirculation, frequently accompanied by endothelial cell injury, enhanced adhesion of leukocytes, macromolecular efflux, production of oxygen free radicals, and mast cell degranulation. Since the microcirculatory disturbance results in injury of organ involved, protection of organ after I/R is of great importance in clinic. Salvia miltiorrhiza root has long been used in Asian countries for clinical treatment of various microcirculatory disturbance-related diseases. This herbal drug contains many active water-soluble compounds, including protocatechuic aldehyde (PAl), 3,4-dihydroxyphenyl lactic acid (DLA) and salvianolic acid B (SalB). These compounds, as well as water-soluble fraction of S. miltiorrhiza root extract (SMRE), have an ability to scavenge peroxides and are able to inhibit the expression of adhesion molecules in vascular endothelium and leukocytes. Moreover, lipophilic compounds of SMRE also prevent the development of vascular damage; NADPH oxidase and platelet aggregation are inhibited by tanshinone IIA and tanshinone IIB, respectively, and the mast cell degranulation is blunted by cryptotanshinone and 15,16-dihydrotanshinone I. Thus, the water-soluble and lipophilic compounds of SMRE appear to improve the I/R-induced vascular damage multifactorially and synergically. This review will summarize the ameliorating effect of compounds derived from SMRE on microcirculatory disturbance and target organ injury after I/R and will provide a new perspective on remedy with multiple drugs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An L-arginine/nitric oxide pathway present in human platelets regulates aggregation.

            Aggregation of human washed platelets with collagen is accompanied by a concentration-dependent increase in cyclic GMP but not cyclic AMP. NG-Monomethyl-L-arginine (L-MeArg), a selective inhibitor of nitric oxide (NO) synthesis from L-arginine, reduces this increase and enhances aggregation. L-Arginine, which has no effect on the basal levels of cyclic GMP, augments the increase in this nucleotide induced by collagen and also inhibits aggregation. Both of these effects of L-arginine are attenuated by L-MeArg. The anti-aggregatory action of L-arginine is potentiated by prostacyclin and by M&B22948, a selective inhibitor of the cyclic GMP phosphodiesterase, but not by HL725, a selective inhibitor of the cyclic AMP phosphodiesterase. L-Arginine also inhibits platelet aggregation in whole blood in a similar manner, although the concentrations required are considerably higher. L-Arginine stimulates the soluble guanylate cyclase and increases cyclic GMP in platelet cytosol. This stimulation is dependent on NADPH and Ca2+ and is associated with the formation of NO. Both the formation of NO and the stimulation of the soluble guanylate cyclase induced by L-arginine are enantiomer specific and abolished by L-MeArg. Thus, human platelets contain an NO synthase which is activated when platelets are stimulated. The consequent generation of NO modulates platelet reactivity by increasing cyclic GMP. Changes in the activity of this pathway in platelets may have physiological, pathophysiological, and therapeutic significance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tanshinone IIA inhibits LPS-induced NF-kappaB activation in RAW 264.7 cells: possible involvement of the NIK-IKK, ERK1/2, p38 and JNK pathways.

              Nuclear factor kappaB (NF-kappaB) activation by NF-kappaB-inducing kinase (NIK)-IkappaB alpha kinase (IKK) pathway and mitogen-activated protein kinases (MAPKs) pathway are important in inflammation. We recently found that the tanshinone IIA, a diterpene isolated from Salvia miltiorrhiza (S. miltiorrhiza), reduced the production of pro-inflammatory mediators in RAW 264.7 cells stimulated with lipopolysaccharide (LPS). However, little is known about the inhibitory mechanisms of tanshinone IIA on the production of pro-inflammatory mediators. To investigate the inhibitory mechanism, we determined the inhibitory effects of tanshinone IIA on the activation of NF-kappaB and IkappaB alpha phosphorylation, and also examined phosphorylation of NIK and IKK as well as the activation of MAPKs such as p38 MAPK (p38), extracellular signal-regulated kinases 1/2 (ERK1/2), and c-Jun N-terminal kinase (JNK) in RAW 264.7 cells stimulated with LPS. Tanshinone IIA inhibited NF-kappaB-DNA complex, NF-kappaB binding activity, and the phosphorylation of IkappaB alpha in a dose dependent manner. Tanshinone IIA also inhibited the translocation of NF-kappaB from cytosol to nucleus. Moreover, the phosphorylation of NIK and IKK as well as the phosphorylation of p38, ERK1/2, and JNK in the LPS-stimulated RAW 264.7 cells were suppressed by the tanshinone IIA in a dose dependent manner. These results suggest that tanshinone IIA may inhibit LPS-induced IkappaB alpha degradation and NF-kappaB activation via suppression of the NIK-IKK pathway as well as the MAPKs (p38, ERK1/2, and JNK) pathway in RAW 264.7 cells and these properties may provide a potential mechanism that explains the anti-inflammatory activity of tanshinone IIA.
                Bookmark

                Author and article information

                Journal
                Evid Based Complement Alternat Med
                Evid Based Complement Alternat Med
                ECAM
                Evidence-based Complementary and Alternative Medicine : eCAM
                Hindawi Publishing Corporation
                1741-427X
                1741-4288
                2013
                10 June 2013
                10 June 2013
                : 2013
                : 247948
                Affiliations
                Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Xicheng District, Beijing 100053, China
                Author notes

                Academic Editor: Keji Chen

                Article
                10.1155/2013/247948
                3691933
                23840250
                f40735e7-5b64-4519-a0ba-0ad5f7a395cf
                Copyright © 2013 Jie Wang et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 17 January 2013
                : 11 May 2013
                Categories
                Review Article

                Complementary & Alternative medicine
                Complementary & Alternative medicine

                Comments

                Comment on this article