13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characterization of a profilin-like protein from Fasciola hepatica

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fasciola hepatica is the causative agent of fasciolosis, an important disease of humans and livestock around the world. There is an urgent requirement for novel treatments for F. hepatica due to increasing reports of drug resistance appearing around the world. The outer body covering of F. hepatica is referred to as the tegument membrane which is of crucial importance for the modulation of the host response and parasite survival; therefore, tegument proteins may represent novel drug or vaccine targets. Previous studies have identified a profilin-like protein in the tegument of F. hepatica. Profilin is a regulatory component of the actin cytoskeleton in all eukaryotic cells, and in some protozoan parasites, profilin has been shown to drive a potent IL-12 response. This study characterized the identified profilin form F. hepatica (termed FhProfilin) for the first time. Recombinant expression of FhProfilin resulted in a protein approximately 14 kDa in size which was determined to be dimeric like other profilins isolated from a range of eukaryotic organisms. FhProfilin was shown to bind poly-L-proline (pLp) and sequester actin monomers which is characteristic of the profilin family; however, there was no binding of FhProfilin to phosphatidylinositol lipids. Despite FhProfilin being a component of the tegument, it was shown not to generate an immune response in experimentally infected sheep or cattle.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Phylogeny.fr: robust phylogenetic analysis for the non-specialist

          Phylogenetic analyses are central to many research areas in biology and typically involve the identification of homologous sequences, their multiple alignment, the phylogenetic reconstruction and the graphical representation of the inferred tree. The Phylogeny.fr platform transparently chains programs to automatically perform these tasks. It is primarily designed for biologists with no experience in phylogeny, but can also meet the needs of specialists; the first ones will find up-to-date tools chained in a phylogeny pipeline to analyze their data in a simple and robust way, while the specialists will be able to easily build and run sophisticated analyses. Phylogeny.fr offers three main modes. The ‘One Click’ mode targets non-specialists and provides a ready-to-use pipeline chaining programs with recognized accuracy and speed: MUSCLE for multiple alignment, PhyML for tree building, and TreeDyn for tree rendering. All parameters are set up to suit most studies, and users only have to provide their input sequences to obtain a ready-to-print tree. The ‘Advanced’ mode uses the same pipeline but allows the parameters of each program to be customized by users. The ‘A la Carte’ mode offers more flexibility and sophistication, as users can build their own pipeline by selecting and setting up the required steps from a large choice of tools to suit their specific needs. Prior to phylogenetic analysis, users can also collect neighbors of a query sequence by running BLAST on general or specialized databases. A guide tree then helps to select neighbor sequences to be used as input for the phylogeny pipeline. Phylogeny.fr is available at: http://www.phylogeny.fr/
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Toxoplasma profilin is essential for host cell invasion and TLR11-dependent induction of an interleukin-12 response.

            Apicomplexan parasites exhibit actin-dependent gliding motility that is essential for migration across biological barriers and host cell invasion. Profilins are key contributors to actin polymerization, and the parasite Toxoplasma gondii possesses a profilin-like protein that is recognized by Toll-like receptor TLR11 in the host innate immune system. Here, we show by conditional disruption of the corresponding gene that T.gondii profilin, while not required for intracellular growth, is indispensable for gliding motility, host cell invasion, active egress from host cells, and virulence in mice. Furthermore, parasites lacking profilin are unable to induce TLR11-dependent production in vitro and in vivo of the defensive host cytokine interleukin-12. Thus, profilin is an essential element of two aspects of T. gondii infection. Like bacterial flagellin, profilin plays a role in motility while serving as a microbial ligand recognized by the host innate immune system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Current Threat of Triclabendazole Resistance in Fasciola hepatica.

              Triclabendazole (TCBZ) is the only chemical that kills early immature and adult Fasciola hepatica (liver fluke) but widespread resistance to the drug greatly compromises fluke control in livestock and humans. The mode of action of TCBZ and mechanism(s) underlying parasite resistance to the drug are not known. Due to the high prevalence of TCBZ resistance (TCBZ-R), effective management of drug resistance is now critical for sustainable livestock production. Here, we discuss the current status of TCBZ-R in F. hepatica, the global distribution of resistance observed in livestock, the possible mechanism(s) of drug action, the proposed mechanisms and genetic basis of resistance, and the prospects for future control of liver fluke infections using an integrated parasite management (IPM) approach.
                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ Inc. (San Diego, USA )
                2167-8359
                7 December 2020
                2020
                : 8
                : e10503
                Affiliations
                [1 ]Centre for Livestock Interactions with Pathogens (CLiP), La Trobe University , Bundoora, VIC, Australia
                [2 ]Department of Animal, Plant and Soil Science and Centre for AgriBioscience (AgriBio), La Trobe University , Bundoora, VIC, Australia
                Author information
                http://orcid.org/0000-0002-3115-6505
                http://orcid.org/0000-0003-4550-2277
                Article
                10503
                10.7717/peerj.10503
                7727368
                f418e12a-6b43-4277-a41c-5a9e3db56af2
                © 2020 Wilkie et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 10 June 2020
                : 15 November 2020
                Funding
                The authors received no funding for this work.
                Categories
                Biochemistry
                Molecular Biology
                Parasitology
                Zoology

                profilin,fasciola hepatica,host-parasite interactions,vaccine antigen

                Comments

                Comment on this article