122
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Texel sheep are renowned for their exceptional meatiness. To identify the genes underlying this economically important feature, we performed a whole-genome scan in a Romanov x Texel F2 population. We mapped a quantitative trait locus with a major effect on muscle mass to chromosome 2 and subsequently fine-mapped it to a chromosome interval encompassing the myostatin (GDF8) gene. We herein demonstrate that the GDF8 allele of Texel sheep is characterized by a G to A transition in the 3' UTR that creates a target site for mir1 and mir206, microRNAs (miRNAs) that are highly expressed in skeletal muscle. This causes translational inhibition of the myostatin gene and hence contributes to the muscular hypertrophy of Texel sheep. Analysis of SNP databases for humans and mice demonstrates that mutations creating or destroying putative miRNA target sites are abundant and might be important effectors of phenotypic variation.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          Systematic discovery of regulatory motifs in human promoters and 3' UTRs by comparison of several mammals.

          Comprehensive identification of all functional elements encoded in the human genome is a fundamental need in biomedical research. Here, we present a comparative analysis of the human, mouse, rat and dog genomes to create a systematic catalogue of common regulatory motifs in promoters and 3' untranslated regions (3' UTRs). The promoter analysis yields 174 candidate motifs, including most previously known transcription-factor binding sites and 105 new motifs. The 3'-UTR analysis yields 106 motifs likely to be involved in post-transcriptional regulation. Nearly one-half are associated with microRNAs (miRNAs), leading to the discovery of many new miRNA genes and their likely target genes. Our results suggest that previous estimates of the number of human miRNA genes were low, and that miRNAs regulate at least 20% of human genes. The overall results provide a systematic view of gene regulation in the human, which will be refined as additional mammalian genomes become available.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Fast folding and comparison of RNA secondary structures

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis.

              Gradients of signalling and transcription factors govern many aspects of embryogenesis, highlighting the need for spatiotemporal control of regulatory protein levels. MicroRNAs are phylogenetically conserved small RNAs that regulate the translation of target messenger RNAs, providing a mechanism for protein dose regulation. Here we show that microRNA-1-1 (miR-1-1) and miR-1-2 are specifically expressed in cardiac and skeletal muscle precursor cells. We found that the miR-1 genes are direct transcriptional targets of muscle differentiation regulators including serum response factor, MyoD and Mef2. Correspondingly, excess miR-1 in the developing heart leads to a decreased pool of proliferating ventricular cardiomyocytes. Using a new algorithm for microRNA target identification that incorporates features of RNA structure and target accessibility, we show that Hand2, a transcription factor that promotes ventricular cardiomyocyte expansion, is a target of miR-1. This work suggests that miR-1 genes titrate the effects of critical cardiac regulatory proteins to control the balance between differentiation and proliferation during cardiogenesis.
                Bookmark

                Author and article information

                Journal
                Nature Genetics
                Nat Genet
                Springer Science and Business Media LLC
                1061-4036
                1546-1718
                July 2006
                June 4 2006
                July 2006
                : 38
                : 7
                : 813-818
                Article
                10.1038/ng1810
                16751773
                f41e6775-75bc-45ea-94be-e75ea1f0d646
                © 2006

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article