105
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      World Health Organization reference values for human semen characteristics*‡

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Semen quality is taken as a surrogate measure of male fecundity in clinical andrology, male fertility, reproductive toxicology, epidemiology and pregnancy risk assessments. Reference intervals for values of semen parameters from a fertile population could provide data from which prognosis of fertility or diagnosis of infertility can be extrapolated. Semen samples from over 4500 men in 14 countries on four continents were obtained from retrospective and prospective analyses on fertile men, men of unknown fertility status and men selected as normozoospermic. Men whose partners had a time-to-pregnancy (TTP) of < or =12 months were chosen as individuals to provide reference distributions for semen parameters. Distributions were also generated for a population assumed to represent the general population. The following one-sided lower reference limits, the fifth centiles (with 95th percent confidence intervals), were generated from men whose partners had TTP < or = 12 months: semen volume, 1.5 ml (1.4-1.7); total sperm number, 39 million per ejaculate (33-46); sperm concentration, 15 million per ml (12-16); vitality, 58% live (55-63); progressive motility, 32% (31-34); total (progressive + non-progressive) motility, 40% (38-42); morphologically normal forms, 4.0% (3.0-4.0). Semen quality of the reference population was superior to that of the men from the general population and normozoospermic men. The data represent sound reference distributions of semen characteristics of fertile men in a number of countries. They provide an appropriate tool in conjunction with clinical data to evaluate a patient's semen quality and prospects for fertility.

          Related collections

          Most cited references99

          • Record: found
          • Abstract: found
          • Article: not found

          Decline in semen quality among fertile men in Paris during the past 20 years.

          Several studies have suggested a population-wide decline in the quality of semen over the past 50 years, but clear evidence for decreasing semen quality in recent decades is lacking. From 1973 through 1992 we measured the volume of seminal fluid, the sperm concentration, and the percentages of motile and morphologically normal spermatozoa in 1351 healthy fertile men. The data on the semen samples were collected at one sperm bank in Paris. The data in each calendar year were analyzed as a function of the year of donation, the age of each patient, the year of birth, and the duration of sexual abstinence before semen collection. There was no change in semen volume during the study period. The mean concentration of sperm decreased by 2.1 percent per year, from 89 x 10(6) per milliliter in 1973 to 60 x 10(6) per milliliter in 1992 (P < 0.001). During the same period the percentages of motile and normal spermatozoa decreased by 0.6 percent and 0.5 percent per year, respectively (both P < 0.001). After adjustment in multiple regression analyses for age and the duration of sexual abstinence, each successive calendar year of birth accounted for 2.6 percent of the yearly decline in the sperm concentration and for 0.3 percent and 0.7 percent, respectively, of the yearly declines in the percentages of motile and normal spermatozoa (all P < 0.001). During the past 20 years, there has been a decline in the concentration and motility of sperm and in the percentage of morphologically normal spermatozoa in fertile men that is independent of the age of the men.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regional differences in semen quality in Europe.

            Recent reports have indicated a decrease in semen quality of men in some countries, and suggested regional differences. A study was undertaken of semen samples from 1082 fertile men from four European cities (Copenhagen, Denmark; Paris, France; Edinburgh, Scotland; and Turku, Finland). Semen analysis was standardized, inter-laboratory differences in assessment of sperm concentration were evaluated, and morphology assessment centralized. Lowest sperm concentrations and total counts were detected for Danish men, followed by French and Scottish men. Finnish men had the highest sperm counts. Men from Edinburgh had the highest proportion of motile spermatozoa, followed by men from Turku, Copenhagen and Paris. Only the differences between Paris/Edinburgh and Paris/Turku were statistically significant (P < 0.003 and P < 0.002 respectively). No significant differences in morphology were detected. A general seasonal variation in sperm concentration (summer 70% of winter) and total sperm count (summer 72% of winter) was detected. Semen quality of a 'standardized' man (30 years old, fertile, ejaculation abstinence of 96 h) were estimated. Typically, sperm concentrations (x 10(6)/ml) for winter/summer were: Turku 132/93; Edinburgh 119/84; Paris 103/73; and Copenhagen 98/69. These differences in semen quality may indicate different environmental exposures or lifestyle changes in the four populations. However, it remains to be seen whether such changes can account for these differences. These data may also serve as a reference point for future studies on time trends in semen quality in Europe.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Geographic differences in semen quality of fertile U.S. males.

              Although geographic variation in semen quality has been reported, this is the first study in the United States to compare semen quality among study centers using standardized methods and strict quality control. We evaluated semen specimens from partners of 512 pregnant women recruited through prenatal clinics in four U.S. cities during 1999-2001; 91% of men provided two specimens. Sperm concentration, semen volume, and motility were determined at the centers, and morphology was assessed at a central laboratory. Study protocols were identical across centers, and quality control was rigorously maintained. Sperm concentration was significantly lower in Columbia, Missouri, than in New York, New York; Minneapolis, Minnesota; and Los Angeles, California. Mean counts were 58.7, 102.9, 98.6, and 80.8 X 10(6)/mL (medians 53.5, 88.5, 81.8, and 64.8 X 10(6)/mL) in Missouri, New York, Minnesota, and California, respectively. The total number of motile sperm was also lower in Missouri than in other centers: 113, 196, 201, and 162 X 10(6) in Missouri, New York, Minnesota, and California, respectively. Semen volume and the percent morphologically normal sperm did not differ appreciably among centers. These between-center differences remained significant in multivariate models that controlled for abstinence time, semen analysis time, age, race, smoking, history of sexually transmitted disease, and recent fever (all p-values < 0.01). Confounding factors and differences in study methods are unlikely to account for the lower semen quality seen in this mid-Missouri population. These data suggest that sperm concentration and motility may be reduced in semirural and agricultural areas relative to more urban and less agriculturally exposed areas.
                Bookmark

                Author and article information

                Journal
                Human Reproduction Update
                Oxford University Press (OUP)
                1460-2369
                1355-4786
                May 2010
                January 01 2010
                November 24 2009
                May 2010
                January 01 2010
                November 24 2009
                : 16
                : 3
                : 231-245
                Article
                10.1093/humupd/dmp048
                19934213
                f41f66ac-929f-4532-a99c-460e571edaa3
                © 2009
                History

                Comments

                Comment on this article