127
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Interleukin-23 Restrains Regulatory T Cell Activity to Drive T Cell-Dependent Colitis

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Interleukin-23 (IL-23) is an inflammatory cytokine that plays a key role in the pathogenesis of several autoimmune and inflammatory diseases. It orchestrates innate and T cell-mediated inflammatory pathways and can promote T helper 17 (Th17) cell responses. Utilizing a T cell transfer model, we showed that IL-23-dependent colitis did not require IL-17 secretion by T cells. Furthermore, IL-23-independent intestinal inflammation could develop if immunosuppressive pathways were reduced. The frequency of naive T cell-derived Foxp3 + cells in the colon increased in the absence of IL-23, indicating a role for IL-23 in controlling regulatory T cell induction. Foxp3-deficient T cells induced colitis when transferred into recipients lacking IL-23p19, showing that IL-23 was not essential for intestinal inflammation in the absence of Foxp3. Taken together, our data indicate that overriding immunosuppressive pathways is an important function of IL-23 in the intestine and could influence not only Th17 cell activity but also other types of immune responses.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17.

          Interleukin 17 (IL-17) has been linked to autoimmune diseases, although its regulation and function have remained unclear. Here we have evaluated in vitro and in vivo the requirements for the differentiation of naive CD4 T cells into effector T helper cells that produce IL-17. This process required the costimulatory molecules CD28 and ICOS but was independent of the cytokines and transcription factors required for T helper type 1 or type 2 differentiation. Furthermore, both IL-4 and interferon-gamma negatively regulated T helper cell production of IL-17 in the effector phase. In vivo, antibody to IL-17 inhibited chemokine expression in the brain during experimental autoimmune encephalomyelitis, whereas overexpression of IL-17 in lung epithelium caused chemokine production and leukocyte infiltration. Thus, IL-17 expression characterizes a unique T helper lineage that regulates tissue inflammation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain.

            Interleukin-12 (IL-12) is a heterodimeric molecule composed of p35 and p40 subunits. Analyses in vitro have defined IL-12 as an important factor for the differentiation of naive T cells into T-helper type 1 CD4+ lymphocytes secreting interferon-gamma (refs 1, 2). Similarly, numerous studies have concluded that IL-12 is essential for T-cell-dependent immune and inflammatory responses in vivo, primarily through the use of IL-12 p40 gene-targeted mice and neutralizing antibodies against p40. The cytokine IL-23, which comprises the p40 subunit of IL-12 but a different p19 subunit, is produced predominantly by macrophages and dendritic cells, and shows activity on memory T cells. Evidence from studies of IL-23 receptor expression and IL-23 overexpression in transgenic mice suggest, however, that IL-23 may also affect macrophage function directly. Here we show, by using gene-targeted mice lacking only IL-23 and cytokine replacement studies, that the perceived central role for IL-12 in autoimmune inflammation, specifically in the brain, has been misinterpreted and that IL-23, and not IL-12, is the critical factor in this response. In addition, we show that IL-23, unlike IL-12, acts more broadly as an end-stage effector cytokine through direct actions on macrophages.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transforming growth factor-beta regulation of immune responses.

              Transforming growth factor-beta (TGF-beta) is a potent regulatory cytokine with diverse effects on hemopoietic cells. The pivotal function of TGF-beta in the immune system is to maintain tolerance via the regulation of lymphocyte proliferation, differentiation, and survival. In addition, TGF-beta controls the initiation and resolution of inflammatory responses through the regulation of chemotaxis, activation, and survival of lymphocytes, natural killer cells, dendritic cells, macrophages, mast cells, and granulocytes. The regulatory activity of TGF-beta is modulated by the cell differentiation state and by the presence of inflammatory cytokines and costimulatory molecules. Collectively, TGF-beta inhibits the development of immunopathology to self or nonharmful antigens without compromising immune responses to pathogens. This review highlights the findings that have advanced our understanding of TGF-beta in the immune system and in disease.
                Bookmark

                Author and article information

                Contributors
                Journal
                Immunity
                Immunity
                Cell Press
                1074-7613
                1097-4180
                11 April 2008
                11 April 2008
                : 28
                : 4
                : 559-570
                Affiliations
                [1 ]Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
                [2 ]Center for Experimental Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
                Author notes
                []Corresponding author fiona.powrie@ 123456path.ox.ac.uk
                [3]

                These authors contributed equally to this work.

                [4]

                Present address: AP-HP, Hôpital Henri Mondor, Service d'immunologie biologique, Créteil, INSERM, U841 équipe 16, Créteil, Université Paris 12, Faculté de Médecine, Créteil, F-94000, France.

                Article
                IMMUNI1403
                10.1016/j.immuni.2008.02.019
                2292821
                18400195
                f4328d1f-b7db-48e5-9ff5-ee4285740c52
                © 2008 ELL & Excerpta Medica.

                This document may be redistributed and reused, subject to certain conditions.

                History
                : 10 August 2007
                : 16 November 2007
                : 13 February 2008
                Categories
                Article

                Immunology
                cellimmuno
                Immunology
                cellimmuno

                Comments

                Comment on this article