137
views
0
recommends
+1 Recommend
0 collections
    16
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antimicrobials Increase Travelers' Risk of Colonization by Extended-Spectrum Betalactamase-Producing Enterobacteriaceae

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Colonized travelers contribute to the pandemic spread of resistant intestinal bacteria. This study is the first to show that antimicrobial use during travel predisposes to colonization by intestinal extended-spectrum beta-lactamase-producing Enterobacteriaceae. Travelers refrain from taking unnecessary antibiotics.

          Abstract

          Background.  More than 300 million travelers visit regions with poor hygiene annually. A significant percentage of them become colonized by resistant intestinal bacteria such as extended-spectrum beta-lactamase–producing Enterobacteriaceae (ESBL-PE) and may transmit the strains to others and to medical care settings when they return home. Despite the threats to global healthcare caused by an upsurge in antimicrobial resistance, no effort has been centered on prevention of colonization while traveling.

          Methods.  Stool samples were collected from 430 Finns before and after traveling outside Scandinavia. All specimens were analyzed for ESBL- and carbapenemase-producing Enterobacteriaceae (CPE). Questionnaires were used to survey volunteers about use of antimicrobials as well as other potential risk factors. The results were subjected to multivariable analysis.

          Results.  Twenty-one percent (90/430) of the travelers became colonized by ESBL-PE and none by CPE. Geographic region, occurrence of travelers' diarrhea (TD), age, and use of antimicrobial (AB) for TD were identified as independent risk factors predisposing to contracting ESBL-PE. Eleven percent of those in subgroup TD−AB−, 21% in TD+AB−, and 37% in TD+AB+ acquired ESBL-PE. The risk proved to be highest in South Asia (46%); 23% became colonized in subgroup TD−AB−, 47% in TD+AB−, and 80% in TD+AB+. In Southeast Asia, the rates were 14%, 37%, and 69%, respectively.

          Conclusions.  TD and antimicrobials for TD proved to be independent risk factors, with up to 80% of TD+AB+ travelers contracting ESBL-PE. In modern pre-travel counseling for those visiting high-risk regions, travelers should be advised against taking antibiotics for mild or moderate TD.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern.

          The medical community relies on clinical expertise and published guidelines to assist physicians with choices in empirical therapy for system-based infectious syndromes, such as community-acquired pneumonia and urinary-tract infections (UTIs). From the late 1990s, multidrug-resistant Enterobacteriaceae (mostly Escherichia coli) that produce extended-spectrum beta lactamases (ESBLs), such as the CTX-M enzymes, have emerged within the community setting as an important cause of UTIs. Recent reports have also described ESBL-producing E coli as a cause of bloodstream infections associated with these community-onset UTIs. The carbapenems are widely regarded as the drugs of choice for the treatment of severe infections caused by ESBL-producing Enterobacteriaceae, although comparative clinical trials are scarce. Thus, more rapid diagnostic testing of ESBL-producing bacteria and the possible modification of guidelines for community-onset bacteraemia associated with UTIs are required.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae.

            To develop a rapid and reliable tool to detect by multiplex PCR assays the most frequently widespread beta-lactamase genes encoding the OXA-1-like broad-spectrum beta-lactamases, extended-spectrum beta-lactamases (ESBLs), plasmid-mediated AmpC beta-lactamases and class A, B and D carbapenemases. Following the design of a specific group of primers and optimization using control strains, a set of six multiplex PCRs and one simplex PCR was created. An evaluation of the set was performed using a collection of 31 Enterobacteriaceae strains isolated from clinical specimens showing a resistance phenotype towards broad-spectrum cephalosporins and/or cephamycins and/or carbapenems. Direct sequencing from PCR products was subsequently carried out to identify beta-lactamase genes. Under optimized conditions, all positive controls confirmed the specificity of group-specific PCR primers. Except for the detection of carbapenemase genes, multiplex and simplex PCR assays were carried out using the same PCR conditions, allowing assays to be performed in a single run. Out of 31 isolates selected, 22 strains produced an ESBL, mostly CTX-M-15 but also CTX-M-1 and CTX-M-9, SHV-12, SHV-5, SHV-2, TEM-21, TEM-52 and a VEB-type ESBL, 6 strains produced a plasmid-mediated AmpC beta-lactamase (five DHA-1 and one CMY-2) and 3 strains produced both an ESBL (two SHV-12, one CTX-M-15) and a plasmid-mediated AmpC beta-lactamase (DHA-1). We report here the development of a useful method composed of a set of six multiplex PCRs and one simplex PCR for the rapid screening of the most frequently encountered beta-lactamases. This method allowed direct sequencing from the PCR products.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe.

              Plasmid-acquired carbapenemases in Enterobacteriaceae, which were first discovered in Europe in the 1990s, are now increasingly being identified at an alarming rate. Although their hydrolysis spectrum may vary, they hydrolyse most β-lactams, including carbapenems. They are mostly of the KPC, VIM, NDM and OXA-48 types. Their prevalence in Europe as reported in 2011 varies significantly from high (Greece and Italy) to low (Nordic countries). The types of carbapenemase vary among countries, partially depending on the cultural/population exchange relationship between the European countries and the possible reservoirs of each carbapenemase. Carbapenemase producers are mainly identified among Klebsiella pneumoniae and Escherichia coli, and still mostly in hospital settings and rarely in the community. Although important nosocomial outbreaks with carbapenemase-producing Enterobacteriaceae have been extensively reported, many new cases are still related to importation from a foreign country. Rapid identification of colonized or infected patients and screening of carriers is possible, and will probably be effective for prevention of a scenario of endemicity, as now reported for extended-spectrum β-lactamase (mainly CTX-M) producers in all European countries. © 2012 The Authors. Clinical Microbiology and Infection © 2012 European Society of Clinical Microbiology and Infectious Diseases.
                Bookmark

                Author and article information

                Journal
                Clin Infect Dis
                Clin. Infect. Dis
                cid
                cid
                Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America
                Oxford University Press
                1058-4838
                1537-6591
                15 March 2015
                21 January 2015
                21 January 2015
                : 60
                : 6
                : 837-846
                Affiliations
                [1 ]Department of Clinical Medicine, University of Helsinki
                [2 ]Division of Infectious Diseases, Department of Medicine, Helsinki University Hospital
                [3 ]Department of Bacteriology and Immunology, University of Helsinki
                [4 ]Aava Travel Clinic, Medical Centre Aava
                [5 ]Department of Clinical Microbiology, Helsinki University Hospital, University of Helsinki
                [6 ]National Institute for Health and Welfare , Helsinki, Finland
                Author notes
                Correspondence: Anu Kantele, MD, PhD, Department of Medicine, Division of Infectious Diseases, Helsinki University Central Hospital, P.O. BOX 348, FI-00029 HUS, Finland ( anu.kantele@ 123456hus.fi ).
                Article
                ciu957
                10.1093/cid/ciu957
                4345818
                25613287
                f43ab0b6-0804-4c73-9c5c-c60004018ffa
                © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence ( http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com.

                History
                : 3 July 2014
                : 19 October 2014
                Categories
                Articles and Commentaries
                Editor's choice

                Infectious disease & Microbiology
                esbl,colonization,travel,antimicrobials,travelers’ diarrhea
                Infectious disease & Microbiology
                esbl, colonization, travel, antimicrobials, travelers’ diarrhea

                Comments

                Comment on this article