7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antilisterial Effect of a Natural Formulation Based on Citrus Extract in Ready-To-Eat Foods

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Controlling Listeria in food is a major challenge, especially because it can persist for years in food processing plants. The best option to control this pathogen is the implementation of effective cleaning and disinfection procedures that guarantee the safety and quality of the final products. In addition, consumer trends are changing, being more aware of the importance of food safety and demanding natural foods, minimally processed and free of chemical additives. For this reason, the current consumption model is focusing on the development of preservatives of natural origin, from plants or microorganisms. In sum, this study aimed to evaluate the antimicrobial effectiveness of a citrus extract formulation rich in flavonoids against several L. monocytogenes and L. innocua strains, using in vitro test (agar diffusion test, minimum bactericidal concentration (MBC), and time-kill curves) and challenge test in food trials ( carne mechada, salami, fresh salmon, lettuce, brine, and mozzarella cheese). The results presented in this work show that citrus extract, at doses of 5 and 10%, had a relevant antimicrobial activity in vitro against the target strains tested. Besides this, citrus extract applied on the surface of food had a significant antilisterial activity, mainly in carne mechada and mozzarella cheese, with reductions of up to eight logarithmic units with respect to the control. These results suggest that citrus extract can be considered a promising tool to improve the hygienic quality of ready-to-eat foods.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Essential Oils in Food Preservation: Mode of Action, Synergies, and Interactions with Food Matrix Components

          Essential oils are aromatic and volatile liquids extracted from plants. The chemicals in essential oils are secondary metabolites, which play an important role in plant defense as they often possess antimicrobial properties. The interest in essential oils and their application in food preservation has been amplified in recent years by an increasingly negative consumer perception of synthetic preservatives. Furthermore, food-borne diseases are a growing public health problem worldwide, calling for more effective preservation strategies. The antibacterial properties of essential oils and their constituents have been documented extensively. Pioneering work has also elucidated the mode of action of a few essential oil constituents, but detailed knowledge about most of the compounds’ mode of action is still lacking. This knowledge is particularly important to predict their effect on different microorganisms, how they interact with food matrix components, and how they work in combination with other antimicrobial compounds. The main obstacle for using essential oil constituents as food preservatives is that they are most often not potent enough as single components, and they cause negative organoleptic effects when added in sufficient amounts to provide an antimicrobial effect. Exploiting synergies between several compounds has been suggested as a solution to this problem. However, little is known about which interactions lead to synergistic, additive, or antagonistic effects. Such knowledge could contribute to design of new and more potent antimicrobial blends, and to understand the interplay between the constituents of crude essential oils. The purpose of this review is to provide an overview of current knowledge about the antibacterial properties and antibacterial mode of action of essential oils and their constituents, and to identify research avenues that can facilitate implementation of essential oils as natural preservatives in foods.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The European Union One Health 2018 Zoonoses Report

            (2019)
            Abstract This report of the European Food Safety Authority and the European Centre for Disease Prevention and Control presents the results of zoonoses monitoring activities carried out in 2018 in 36 European countries (28 Member States (MS) and 8 non‐MS). The first and second most commonly reported zoonoses in humans were campylobacteriosis and salmonellosis, respectively. The European Union (EU) trend for confirmed human cases of these two diseases was stable during 2014–2018. The proportion of human salmonellosis cases due to Salmonella Enteritidis was at the same level in 2018 as in 2017. Of the 27 reporting MS, 16 met all Salmonella reduction targets for poultry, whereas 11 MS failed meeting at least one. The EU flock prevalence of target Salmonella serovars in breeding hens, laying hens, broilers and fattening turkeys decreased during recent years but stalled in breeding turkeys. Salmonella results from Competent Authorities for pig carcasses and for poultry tested through National Control Programmes were more frequently positive compared with food business operators. Shiga toxin‐producing Escherichia coli (STEC) infections in humans were the third most commonly reported zoonosis in the EU and increased from 2014 to 2018. Yersiniosis was the fourth most frequently reported zoonosis in humans in 2018 with a stable trend in 2014–2018. The number of reported confirmed listeriosis cases further increased in 2018, despite Listeria rarely exceeding the EU food safety limit tested in ready‐to‐eat food. In total, 5,146 food‐ and waterborne outbreaks were reported. Salmonella was the most commonly detected agent with S. Enteritidis causing one in five outbreaks. Salmonella in eggs and egg products was the highest risk agent/food pair. A large increase of human West Nile virus infections was reported in 2018. The report further updates on bovine tuberculosis, Brucella, Trichinella, Echinococcus, Toxoplasma, rabies, Coxiella burnetii (Q fever) and tularaemia.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Natural food additives: Quo vadis?

                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Foods
                Foods
                foods
                Foods
                MDPI
                2304-8158
                25 June 2021
                July 2021
                : 10
                : 7
                : 1475
                Affiliations
                [1 ]DMC Research Center, Camino de Jayena, 82, 18620 Alhendín, Spain; jariza@ 123456dmcrc.com (J.J.A.); dgarcia@ 123456dmcrc.com (D.G.-L.); espe.sanchez2@ 123456gmail.com (E.S.-N.); eguillamon@ 123456domca.com (E.G.)
                [2 ]Departamento de Microbiología, Universidad de Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain; mmartine@ 123456ugr.es
                Author notes
                [* ]Correspondence: abarjona@ 123456dmcrc.com ; Tel.: +34-958-576-486
                Author information
                https://orcid.org/0000-0001-7385-9084
                https://orcid.org/0000-0002-1691-2587
                Article
                foods-10-01475
                10.3390/foods10071475
                8305249
                34202152
                f4441114-d2e9-4913-873a-fb4f2dbb8d7d
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 27 May 2021
                : 23 June 2021
                Categories
                Article

                listeria,natural preservatives,flavonoids,food safety
                listeria, natural preservatives, flavonoids, food safety

                Comments

                Comment on this article