19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Clock Genes in the Heart : Characterization and Attenuation With Hypertrophy

      1 , 1 , 1
      Circulation Research
      Ovid Technologies (Wolters Kluwer Health)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We investigated whether the heart, like other mammalian organs, possesses internal clocks, and, if so, whether pressure overload-induced hypertrophy alters the clock mechanism. Clock genes are intrinsically maintained, as shown by rhythmic changes even in single cells. Clocks are believed to confer a selective advantage by priming the cell for the expected environmental stimulus. In this way, clocks allow anticipation, thereby synchronizing responsiveness of the cell with the timing of the stimulus. We have found that in rat heart all mammalian homologues of known Drosophila clock genes (bmal1, clock, cry1, cry2, per1, per2, per3, dbp, hlf, and tef) show circadian patterns of expression and that the induction of clock output genes (the PAR [rich in proline and acidic amino acid residues] transcription factors dbp, hlf, and tef) is attenuated in the pressure-overloaded hypertrophied heart. The results expose a new dynamic regulatory system in the heart, which is partially lost with hypertrophy. Although the target genes of these PAR transcription factors are not known in the heart, the results provide evidence for a diminished ability of the hypertrophied heart to anticipate and subsequently adapt to physiological alterations during the day.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Interacting molecular loops in the mammalian circadian clock.

          We show that, in the mouse, the core mechanism for the master circadian clock consists of interacting positive and negative transcription and translation feedback loops. Analysis of Clock/Clock mutant mice, homozygous Period2(Brdm1) mutants, and Cryptochrome-deficient mice reveals substantially altered Bmal1 rhythms, consistent with a dominant role of PERIOD2 in the positive regulation of the Bmal1 loop. In vitro analysis of CRYPTOCHROME inhibition of CLOCK: BMAL1-mediated transcription shows that the inhibition is through direct protein:protein interactions, independent of the PERIOD and TIMELESS proteins. PERIOD2 is a positive regulator of the Bmal1 loop, and CRYPTOCHROMES are the negative regulators of the Period and Cryptochrome cycles.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A novel method for real time quantitative RT-PCR.

            A novel approach to quantitative reverse transcriptase polymerase chain reaction (QC RT-PCR) using real time detection and the 5' nuclease assay has been developed. Cystic fibrosis transmembrane transductance regulator (CFTR) target mRNA is reverse transcribed, amplified, detected, and quantitated in real time. A fluorogenic probe was designed to detect the CFTR amplicon. Relative increase in 6-carboxy-fluorescein reporter fluorescent emission is monitored during PCR amplification using an analytical thermal cycler. An internal control template containing the same primer sequences as the CFTR amplicon, but a different internal sequence, has been designed as a control. An internal control probe with a reporter fluorescent dye tetrachloro-6-carboxy-fluorescein was designed to hybridize to the internal control amplicon. The internal control template is placed in each reaction tube and is used for quantitative analysis of the CFTR mRNA. This method provides a convenient and high-throughput format for QC RT-PCR.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior

                Bookmark

                Author and article information

                Journal
                Circulation Research
                Circulation Research
                Ovid Technologies (Wolters Kluwer Health)
                0009-7330
                1524-4571
                June 08 2001
                June 08 2001
                : 88
                : 11
                : 1142-1150
                Affiliations
                [1 ]From the Department of Internal Medicine, Division of Cardiology, University of Texas–Houston Medical School, Houston, Tex.
                Article
                10.1161/hh1101.091190
                11397780
                f446e2ca-2995-4a30-879e-123a0e696e11
                © 2001
                History

                Comments

                Comment on this article