28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microvascular resuscitation as a therapeutic goal in severe sepsis

      review-article
      1 , 1 ,
      Critical Care
      BioMed Central
      Re-establishing organ function in severe sepsis: targeting the microcirculation
      2132005

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sepsis causes microvascular dysfunction. Increased heterogeneity of capillary blood flow results in local tissue hypoxia, which can cause local tissue inflammation, impaired oxygen extraction, and, ultimately, organ dysfunction. Microvascular dysfunction is clinically relevant because it is a marker for mortality: it improves rapidly in survivors of sepsis but fails to improve in nonsurvivors. This, along with the fact that resuscitation of mean arterial pressure and cardiac output alone fails to improve microvascular function, means that microvascular resuscitation is therefore a therapeutic goal. In animal studies of sepsis, volume resuscitation improves microvascular permeability and tissue oxygenation, and leads to improved organ function, including a reduction in myocardial dysfunction. Microvascular resuscitation strategies include hemodynamic resuscitation using the linked combination of volume resuscitation, judicious vasopressor use, and inotropes and vasodilators. Alternative vasoactive agents, such as vasopressin, may improve microcirculatory function to a greater degree than conventional vasopressors. Successful modulation of inflammation has a positive impact on endothelial function. Finally, targeted treatment of the endothelium, using activated protein C, also improves microvascular function and ultimately increases survival. Thus, attention must be paid to the microcirculation in patients with sepsis, and therapeutic strategies should be employed to resuscitate the microcirculation in order to avoid organ dysfunction and to reduce mortality.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Infection and inflammation and the coagulation system.

          Severe infection and inflammation almost invariably lead to hemostatic abnormalities, ranging from insignificant laboratory changes to severe disseminated intravascular coagulation (DIC). Systemic inflammation results in activation of coagulation, due to tissue factor-mediated thrombin generation, downregulation of physiological anticoagulant mechanisms, and inhibition of fibrinolysis. Pro-inflammatory cytokines play a central role in the differential effects on the coagulation and fibrinolysis pathways. Vice-versa, activation of the coagulation system may importantly affect inflammatory responses by direct and indirect mechanisms. Apart from the general coagulation response to inflammation associated with severe infection, specific infections may cause distinct features, such as hemorrhagic fever or thrombotic microangiopathy. The relevance of the cross-talk between inflammation and coagulation is underlined by the promising results in the treatment of severe systemic infection with modulators of coagulation and inflammation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effects of perfusion pressure on tissue perfusion in septic shock.

            To measure the effects of increasing mean arterial pressure (MAP) on systemic oxygen metabolism and regional tissue perfusion in septic shock. Prospective study. Medical and surgical intensive care units of a tertiary care teaching hospital. Ten patients with the diagnosis of septic shock who required pressor agents to maintain a MAP > or = 60 mm Hg after fluid resuscitation to a pulmonary artery occlusion pressure (PAOP) > or = 12 mm Hg. Norepinephrine was titrated to MAPs of 65, 75, and 85 mm Hg in 10 patients with septic shock. At each level of MAP, hemodynamic parameters (heart rate, PAOP, cardiac index, left ventricular stroke work index, and systemic vascular resistance index), metabolic parameters (oxygen delivery, oxygen consumption, arterial lactate), and regional perfusion parameters (gastric mucosal Pco2, skin capillary blood flow and red blood cell velocity, urine output) were measured. Increasing the MAP from 65 to 85 mm Hg with norepinephrine resulted in increases in cardiac index from 4.7+/-0.5 L/min/m2 to 5.5+/-0.6 L/min/m2 (p < 0.03). Arterial lactate was 3.1+/-0.9 mEq/L at a MAP of 65 mm Hg and 3.0+/-0.9 mEq/L at 85 mm Hg (NS). The gradient between arterial P(CO2) and gastric intramucosal Pco2 was 13+/-3 mm Hg (1.7+/-0.4 kPa) at a MAP of 65 mm Hg and 16+/-3 at 85 mm Hg (2.1+/-0.4 kPa) (NS). Urine output at 65 mm Hg was 49+/-18 mL/hr and was 43+/-13 mL/hr at 85 mm Hg (NS). As the MAP was raised, there were no significant changes in skin capillary blood flow or red blood cell velocity. Increasing the MAP from 65 mm Hg to 85 mm Hg with norepinephrine does not significantly affect systemic oxygen metabolism, skin microcirculatory blood flow, urine output, or splanchnic perfusion.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nitroglycerin in septic shock after intravascular volume resuscitation.

              In patients with septic shock, oxygen consumption is increased, but oxygen delivery and extraction is impaired, partly because of microcirculatory shutdown and shunting. Orthogonal polarisation spectral (OPS) imaging allows visualisation of the microcirculation. We used this technique to assess microcirculatory flow in septic-shock patients who had a mean arterial blood pressure of more than 60 mm Hg and central venous pressure greater than 12 mm Hg. The infusion of 0.5 mg of nitroglycerin intravenously then resulted in a marked increase in microvascular flow on OPS imaging. Improved recruitment of the microcirculation could be a new resuscitation endpoint in septic shock.
                Bookmark

                Author and article information

                Conference
                Crit Care
                Critical Care
                BioMed Central
                1364-8535
                1466-609X
                2005
                25 August 2005
                : 9
                : Suppl 4
                : S27-S32
                Affiliations
                [1 ]The James Hogg Imaging, Cell Analysis, and Phenotyping Toward Understanding Responsive, Reparative, Remodelling, and Recombinant Events Centre for Cardiovascular and Pulmonary Research, University of British Columbia, Vancouver, Canada
                Article
                cc3756
                10.1186/cc3756
                3226165
                16168071
                f45599d3-4414-4161-a8db-167c31953741
                Copyright ©2005 BioMed Central Ltd
                Re-establishing organ function in severe sepsis: targeting the microcirculation
                Brussels, Belgium
                2132005
                History
                Categories
                Review

                Emergency medicine & Trauma
                Emergency medicine & Trauma

                Comments

                Comment on this article