22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Electric-field control of tri-state phase transformation with a selective dual-ion switch

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Materials can be transformed from one crystalline phase to another by using an electric field to control ion transfer, in a process that can be harnessed in applications such as batteries, smart windows and fuel cells. Increasing the number of transferrable ion species and of accessible crystalline phases could in principle greatly enrich material functionality. However, studies have so far focused mainly on the evolution and control of single ionic species (for example, oxygen, hydrogen or lithium ions). Here we describe the reversible and non-volatile electric-field control of dual-ion (oxygen and hydrogen) phase transformations, with associated electrochromic and magnetoelectric effects. We show that controlling the insertion and extraction of oxygen and hydrogen ions independently of each other can direct reversible phase transformations among three different material phases: the perovskite SrCoO3−δ (ref. 12), the brownmillerite SrCoO2.5 (ref. 13), and a hitherto-unexplored phase, HSrCoO2.5. By analysing the distinct optical absorption properties of these phases, we demonstrate selective manipulation of spectral transparency in the visible-light and infrared regions, revealing a dual-band electrochromic effect that could see application in smart windows. Moreover, the starkly different magnetic and electric properties of the three phases—HSrCoO2.5 is a weakly ferromagnetic insulator, SrCoO3−δ is a ferromagnetic metal, and SrCoO2.5 is an antiferromagnetic insulator—enable an unusual form of magnetoelectric coupling, allowing electric-field control of three different magnetic ground states. These findings open up opportunities for the electric-field control of multistate phase transformations with rich functionalities.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature.

          Multiferroic materials, which offer the possibility of manipulating the magnetic state by an electric field or vice versa, are of great current interest. In this work, we demonstrate the first observation of electrical control of antiferromagnetic domain structure in a single-phase multiferroic material at room temperature. High-resolution images of both antiferromagnetic and ferroelectric domain structures of (001)-oriented multiferroic BiFeO3 films revealed a clear domain correlation, indicating a strong coupling between the two types of order. The ferroelectric structure was measured using piezo force microscopy, whereas X-ray photoemission electron microscopy as well as its temperature dependence was used to detect the antiferromagnetic configuration. Antiferromagnetic domain switching induced by ferroelectric polarization switching was observed, in agreement with theoretical predictions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The structure of the first coordination shell in liquid water.

            X-ray absorption spectroscopy and x-ray Raman scattering were used to probe the molecular arrangement in the first coordination shell of liquid water. The local structure is characterized by comparison with bulk and surface of ordinary hexagonal ice Ih and with calculated spectra. Most molecules in liquid water are in two hydrogen-bonded configurations with one strong donor and one strong acceptor hydrogen bond in contrast to the four hydrogen-bonded tetrahedral structure in ice. Upon heating from 25 degrees C to 90 degrees C, 5 to 10% of the molecules change from tetrahedral environments to two hydrogen-bonded configurations. Our findings are consistent with neutron and x-ray diffraction data, and combining the results sets a strong limit for possible local structure distributions in liquid water. Serious discrepancies with structures based on current molecular dynamics simulations are observed.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Oxygen 1sx-ray-absorption edges of transition-metal oxides

                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Nature
                0028-0836
                1476-4687
                May 31 2017
                May 31 2017
                : 546
                : 7656
                : 124-128
                Article
                10.1038/nature22389
                28569818
                f45e1bab-a64e-40dc-9d4f-c001c8d1f0c6
                © 2017
                History

                Comments

                Comment on this article