65
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Revisiting the ‘Gadgil effect’: do interguild fungal interactions control carbon cycling in forest soils?

      ,
      New Phytologist
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references110

          • Record: found
          • Abstract: found
          • Article: not found

          Rebuilding community ecology from functional traits.

          There is considerable debate about whether community ecology will ever produce general principles. We suggest here that this can be achieved but that community ecology has lost its way by focusing on pairwise species interactions independent of the environment. We assert that community ecology should return to an emphasis on four themes that are tied together by a two-step process: how the fundamental niche is governed by functional traits within the context of abiotic environmental gradients; and how the interaction between traits and fundamental niches maps onto the realized niche in the context of a biotic interaction milieu. We suggest this approach can create a more quantitative and predictive science that can more readily address issues of global change.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Nitrogen and Lignin Control of Hardwood Leaf Litter Decomposition Dynamics

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Positive interactions among alpine plants increase with stress.

              Plants can have positive effects on each other. For example, the accumulation of nutrients, provision of shade, amelioration of disturbance, or protection from herbivores by some species can enhance the performance of neighbouring species. Thus the notion that the distributions and abundances of plant species are independent of other species may be inadequate as a theoretical underpinning for understanding species coexistence and diversity. But there have been no large-scale experiments designed to examine the generality of positive interactions in plant communities and their importance relative to competition. Here we show that the biomass, growth and reproduction of alpine plant species are higher when other plants are nearby. In an experiment conducted in subalpine and alpine plant communities with 115 species in 11 different mountain ranges, we find that competition generally, but not exclusively, dominates interactions at lower elevations where conditions are less physically stressful. In contrast, at high elevations where abiotic stress is high the interactions among plants are predominantly positive. Furthermore, across all high and low sites positive interactions are more important at sites with low temperatures in the early summer, but competition prevails at warmer sites.
                Bookmark

                Author and article information

                Journal
                New Phytologist
                New Phytol
                Wiley-Blackwell
                0028646X
                March 2016
                March 2016
                : 209
                : 4
                : 1382-1394
                Article
                10.1111/nph.13648
                26365785
                f4671456-3ed1-407c-af1b-31deb474c478
                © 2016
                History

                Comments

                Comment on this article