21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Variability of the Sheep Lung Microbiota

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Sequencing technologies have recently facilitated the characterization of bacterial communities present in lungs during health and disease. However, there is currently a dearth of information concerning the variability of such data in health both between and within subjects. This study seeks to examine such variability using healthy adult sheep as our model system. Protected specimen brush samples were collected from three spatially disparate segmental bronchi of six adult sheep (age, 20 months) on three occasions (day 0, 1 month, and 3 months). To further explore the spatial variability of the microbiotas, more-extensive brushing samples ( n = 16) and a throat swab were taken from a separate sheep. The V2 and V3 hypervariable regions of the bacterial 16S rRNA genes were amplified and sequenced via Illumina MiSeq. DNA sequences were analyzed using the mothur software package. Quantitative PCR was performed to quantify total bacterial DNA. Some sheep lungs contained dramatically different bacterial communities at different sampling sites, whereas in others, airway microbiotas appeared similar across the lung. In our spatial variability study, we observed clustering related to the depth within the lung from which samples were taken. Lung depth refers to increasing distance from the glottis, progressing in a caudal direction. We conclude that both host influence and local factors have impacts on the composition of the sheep lung microbiota.

          IMPORTANCE Until recently, it was assumed that the lungs were a sterile environment which was colonized by microbes only during disease. However, recent studies using sequencing technologies have found that there is a small population of bacteria which exists in the lung during health, referred to as the “lung microbiota.” In this study, we characterize the variability of the lung microbiotas of healthy sheep. Sheep not only are economically important animals but also are often used as large animal models of human respiratory disease. We conclude that, while host influence does play a role in dictating the types of microbes which colonize the airways, it is clear that local factors also play an important role in this regard. Understanding the nature and influence of these factors will be key to understanding the variability in, and functional relevance of, the lung microbiota.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: not found

          The role of pH in determining the species composition of the human colonic microbiota.

          The pH of the colonic lumen varies with anatomical site and microbial fermentation of dietary residue. We have investigated the impact of mildly acidic pH, which occurs in the proximal colon, on the growth of different species of human colonic bacteria in pure culture and in the complete microbial community. Growth was determined for 33 representative human colonic bacteria at three initial pH values (approximately 5.5, 6.2 and 6.7) in anaerobic YCFA medium, which includes a mixture of short-chain fatty acids (SCFA) with 0.2% glucose as energy source. Representatives of all eight Bacteroides species tested grew poorly at pH 5.5, as did Escherichia coli, whereas 19 of the 23 gram-positive anaerobes tested gave growth rates at pH 5.5 that were at least 50% of those at pH 6.7. Growth inhibition of B. thetaiotaomicron at pH 5.5 was increased by the presence of the SCFA mix (33 mM acetate, 9 mM propionate and 1 mM each of iso-valerate, valerate and iso-butyrate). Analysis of amplified 16S rRNA sequences demonstrated a major pH-driven shift within a human faecal bacterial community in a continuous flow fermentor. Bacteroides spp. accounted for 27% of 16S rRNA sequences detected at pH 5.5, but 86% of sequences at pH 6.7. Conversely, butyrate-producing gram-positive bacteria related to Eubacterium rectale represented 50% of all 16S rRNA sequences at pH 5.5, but were not detected at pH 6.7. Inhibition of the growth of a major group of gram-negative bacteria at mildly acidic pH apparently creates niches that can be exploited by more low pH-tolerant microorganisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Barcoded primers used in multiplex amplicon pyrosequencing bias amplification.

            "Barcode-tagged" PCR primers used for multiplex amplicon sequencing generate a thus-far-overlooked amplification bias that produces variable terminal restriction fragment length polymorphism (T-RFLP) and pyrosequencing data from the same environmental DNA template. We propose a simple two-step PCR approach that increases reproducibility and consistently recovers higher genetic diversity in pyrosequencing libraries.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Enrichment of lung microbiome with supraglottic taxa is associated with increased pulmonary inflammation

              Background The lung microbiome of healthy individuals frequently harbors oral organisms. Despite evidence that microaspiration is commonly associated with smoking-related lung diseases, the effects of lung microbiome enrichment with upper airway taxa on inflammation has not been studied. We hypothesize that the presence of oral microorganisms in the lung microbiome is associated with enhanced pulmonary inflammation. To test this, we sampled bronchoalveolar lavage (BAL) from the lower airways of 29 asymptomatic subjects (nine never-smokers, 14 former-smokers, and six current-smokers). We quantified, amplified, and sequenced 16S rRNA genes from BAL samples by qPCR and 454 sequencing. Pulmonary inflammation was assessed by exhaled nitric oxide (eNO), BAL lymphocytes, and neutrophils. Results BAL had lower total 16S than supraglottic samples and higher than saline background. Bacterial communities in the lower airway clustered in two distinct groups that we designated as pneumotypes. The rRNA gene concentration and microbial community of the first pneumotype was similar to that of the saline background. The second pneumotype had higher rRNA gene concentration and higher relative abundance of supraglottic-characteristic taxa (SCT), such as Veillonella and Prevotella, and we called it pneumotypeSCT. Smoking had no effect on pneumotype allocation, α, or β diversity. PneumotypeSCT was associated with higher BAL lymphocyte-count (P= 0.007), BAL neutrophil-count (P= 0.034), and eNO (P= 0.022). Conclusion A pneumotype with high relative abundance of supraglottic-characteristic taxa is associated with enhanced subclinical lung inflammation.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                Appl Environ Microbiol
                Appl. Environ. Microbiol
                aem
                aem
                AEM
                Applied and Environmental Microbiology
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                0099-2240
                1098-5336
                18 March 2016
                16 May 2016
                1 June 2016
                16 May 2016
                : 82
                : 11
                : 3225-3238
                Affiliations
                [a ]The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian, United Kingdom
                [b ]Monogastric Science Research Centre, Scotland's Rural College (SRUC), Edinburgh, Midlothian, United Kingdom
                University of Michigan
                Author notes
                Address correspondence to Laura Glendinning, laura.glendinning@ 123456roslin.ed.ac.uk .

                Citation Glendinning L, Wright S, Pollock J, Tennant P, Collie D, McLachlan G. 2016. Variability of the sheep lung microbiota. Appl Environ Microbiol 82:3225–3238. doi: 10.1128/AEM.00540-16.

                Author information
                http://orcid.org/0000-0003-4789-6644
                Article
                00540-16
                10.1128/AEM.00540-16
                4959240
                26994083
                f4688169-95cd-4140-acc3-a4d1976f9790
                Copyright © 2016 Glendinning et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

                History
                : 19 February 2016
                : 15 March 2016
                Page count
                Figures: 8, Tables: 3, Equations: 0, References: 106, Pages: 14, Words: 11072
                Funding
                Funded by: Biotechnology and Biological Sciences Research Council (BBSRC) http://dx.doi.org/10.13039/501100000268
                Award ID: BB/J01446X/1
                Award Recipient : Gerry McLachlan
                Categories
                Microbial Ecology

                Microbiology & Virology
                Microbiology & Virology

                Comments

                Comment on this article