28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Novel Hydroxy- and Epoxy- cis-Jasmone and Dihydrojasmone Derivatives Affect the Foraging Activity of the Peach Potato Aphid Myzus persicae (Sulzer) (Homoptera: Aphididae)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Jasmonates show great potential in sustainable agriculture due to their various roles in natural mechanisms of plant defense, and because they are non-toxic, non-mutagenic, and easily metabolized. The aim of the study was to explore structure–activity relationships of dihydrojasmone, cis-jasmone, and their derivatives at the plant–aphid interface. We focused on the behavioral responses of aphids, following the exogenous application of natural jasmonates and their derivatives to the host plants. Aphid probing behavior was examined using an electrical penetration graph technique (EPG). The chemoenzymatic transformation of cis-jasmone and the activity of two new derivatives are described. The application of cis-jasmone, dihydrojasmone, the hydroxyderivatives, epoxyderivatives, and alkyl-substituted δ-lactones hindered the foraging activity of Myzus persicae (Sulz.) (Hemiptera: Aphididae) during early stages of probing at the level of non-phloem tissues. The application of saturated bicyclic epoxy-δ-lactone enhanced plant acceptance by M. persicae. Jasmonate derivatives containing a hydroxy group, especially in correlation with a lactone ring, were more active than natural compounds and other derivatives studied. Jasmonates of the present study are worth considering as elements of sustainable aphid control as components of the “push–pull” strategy.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development.

          Jasmonates are ubiquitously occurring lipid-derived compounds with signal functions in plant responses to abiotic and biotic stresses, as well as in plant growth and development. Jasmonic acid and its various metabolites are members of the oxylipin family. Many of them alter gene expression positively or negatively in a regulatory network with synergistic and antagonistic effects in relation to other plant hormones such as salicylate, auxin, ethylene and abscisic acid. This review summarizes biosynthesis and signal transduction of jasmonates with emphasis on new findings in relation to enzymes, their crystal structure, new compounds detected in the oxylipin and jasmonate families, and newly found functions. Crystal structure of enzymes in jasmonate biosynthesis, increasing number of jasmonate metabolites and newly identified components of the jasmonate signal-transduction pathway, including specifically acting transcription factors, have led to new insights into jasmonate action, but its receptor(s) is/are still missing, in contrast to all other plant hormones.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The use of push-pull strategies in integrated pest management.

            Push-pull strategies involve the behavioral manipulation of insect pests and their natural enemies via the integration of stimuli that act to make the protected resource unattractive or unsuitable to the pests (push) while luring them toward an attractive source (pull) from where the pests are subsequently removed. The push and pull components are generally nontoxic. Therefore, the strategies are usually integrated with methods for population reduction, preferably biological control. Push-pull strategies maximize efficacy of behavior-manipulating stimuli through the additive and synergistic effects of integrating their use. By orchestrating a predictable distribution of pests, efficiency of population-reducing components can also be increased. The strategy is a useful tool for integrated pest management programs reducing pesticide input. We describe the principles of the strategy, list the potential components, and present case studies reviewing work on the development and use of push-pull strategies in each of the major areas of pest control.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              New roles for cis-jasmone as an insect semiochemical and in plant defense.

              cis-jasmone, or (Z)-jasmone, is well known as a component of plant volatiles, and its release can be induced by damage, for example during insect herbivory. Using the olfactory system of the lettuce aphid to investigate volatiles from plants avoided by this insect, (Z)-jasmone was found to be electrophysiologically active and also to be repellent in laboratory choice tests. In field studies, repellency from traps was demonstrated for the damson-hop aphid, and with cereal aphids numbers were reduced in plots of winter wheat treated with (Z)-jasmone. In contrast, attractant activity was found in laboratory and wind tunnel tests for insects acting antagonistically to aphids, namely the seven-spot ladybird and an aphid parasitoid. When applied in the vapor phase to intact bean plants, (Z)-jasmone induced the production of volatile compounds, including the monoterpene (E)-beta-ocimene, which affect plant defense, for example by stimulating the activity of parasitic insects. These plants were more attractive to the aphid parasitoid in the wind tunnel when tested 48 h after exposure to (Z)-jasmone had ceased. This possible signaling role of (Z)-jasmone is qualitatively different from that of the biosynthetically related methyl jasmonate and gives a long-lasting effect after removal of the stimulus. Differential display was used to compare mRNA populations in bean leaves exposed to the vapor of (Z)-jasmone and methyl jasmonate. One differentially displayed fragment was cloned and shown by Northern blotting to be up-regulated in leaf tissue by (Z)-jasmone. This sequence was identified by homology as being derived from a gene encoding an alpha-tubulin isoform.
                Bookmark

                Author and article information

                Journal
                Molecules
                Molecules
                molecules
                Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry
                MDPI
                1420-3049
                15 September 2018
                September 2018
                : 23
                : 9
                : 2362
                Affiliations
                [1 ]Department of Botany and Ecology, University of Zielona Góra, Szafrana 1, 65-516 Zielona Góra, Poland; m.paprocka90@ 123456wp.pl (M.P.); k.dancewicz@ 123456wnb.uz.zgora.pl (K.D.)
                [2 ]Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; anna.gliszczynska@ 123456wp.pl
                Author notes
                [* ]Correspondence: b.gabrys@ 123456wnb.uz.zgora.pl ; Tel.: +48-68-328-7317
                Article
                molecules-23-02362
                10.3390/molecules23092362
                6225294
                30223586
                f46afbbc-ea00-49be-9738-1fb484ef5a3c
                © 2018 by the author.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 13 July 2018
                : 11 September 2018
                Categories
                Article

                aphid probing behavior,antifeedant,structure-activity relationships

                Comments

                Comment on this article