33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of Monochromatic Light on Expression of Estrogen Receptor (ER) and Progesterone Receptor (PR) in Ovarian Follicles of Chicken

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Artificial illumination is widely used in modern poultry houses and different wavelengths of light affect poultry production and behaviour. In this study, we measure mRNA and protein abundance of estrogen receptors (ERs) and progesterone receptors (PRs) in order to investigate the effect of monochromatic light on egg production traits and gonadal hormone function in chicken ovarian follicles. Five hundred and fifty-two 19-wk-old laying hens were exposed to three monochromatic lights: red (RL; 660 nm), green (GL; 560 nm), blue (BL; 480 nm) and control cool white (400–760 nm) light with an LED (light-emitting diode). There were 4 identical light-controlled rooms (n = 138) each containing 3 replicate pens (46 birds per pen). Water was supplied ad libitum and daily rations were determined according to the nutrient suggestions for poultry. Results showed that under BL conditions there was an increase in the total number of eggs at 300 days of age and egg-laying rate during the peak laying period. The BL and GL extended the duration of the peak laying period. Plasma melatonin was lowest in birds reared under BL. Plasma estradiol was elevated in the GL-exposed laying hens, and GL and BL increased progesterone at 28 wk of age. In the granulosa layers of the fifth largest preovulatory follicle (F5), the third largest preovulatory follicle (F3) and the largest preovulatory follicle (F1), ERα mRNA was increased by BL and GL. Treatment with BL increased ERβ mRNA in granulosa layers of F5, F3 and F1, while GL increased ERβ mRNA in F5 and F3. There was a corresponding increase in abundance of the proteins in the granulosa layers of F5, with an increase in PR-B, generated via an alternative splice site, relative to PR-A. Treatment with BL also increased expression of PR mRNA in all of the granulosa layers of follicles, while treatment with GL increased expression of PR mRNA in granulosa layers of SYF(small yellow follicle), F5 and F1. These results indicate that blue and green monochromatic lights promote egg production traits via stimulating gonadal hormone secretion and up-regulating expression of ERs and PRs. Changes in PR-B protein suggest that this form of the progesterone receptor is predominant for progesterone action in the granulosa layers of preovulatory follicles in chickens during light stimulation.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities.

          Although progesterone has been recognized as essential for the establishment and maintenance of pregnancy, this steroid hormone has been recently implicated to have a functional role in a number of other reproductive events. The physiological effects of progesterone are mediated by the progesterone receptor (PR), a member of the nuclear receptor superfamily of transcription factors. In most cases the PR is induced by estrogen, implying that many of the in vivo effects attributed to progesterone could also be the result of concomitantly administered estrogen. Therefore, to clearly define those physiological events that are specifically attributable to progesterone in vivo, we have generated a mouse model carrying a null mutation of the PR gene using embryonic stem cell/gene targeting techniques. Male and female embryos homozygous for the PR mutation developed normally to adulthood. However, the adult female PR mutant displayed significant defects in all reproductive tissues. These included an inability to ovulate, uterine hyperplasia and inflammation, severely limited mammary gland development, and an inability to exhibit sexual behavior. Collectively, these results provide direct support for progesterone's role as a pleiotropic coordinator of diverse reproductive events that together ensure species survival.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Visual pigments and oil droplets from six classes of photoreceptor in the retinas of birds.

            Microspectrophotometric examination of the retinal photoreceptors of the budgerigar (shell parakeet), Melopsittacus undulatus (Psittaciformes) and the zebra finch, Taeniopygia guttata (Passeriformes), demonstrate the presence of four, spectrally distinct classes of single cone that contain visual pigments absorbing maximally at about 565, 507, 430-445 and 360-380 nm. The three longer-wave cone classes contain coloured oil droplets acting as long pass filters with cut-offs at about 570, 500-520 and 445 nm, respectively, whereas the ultraviolet-sensitive cones contain a transparent droplet. The two species possess double cones in which both members contain the long-wave-sensitive visual pigment, but only the principal member contains an oil droplet, with cut-off at about 420 nm. A survey of the cones of the pigeon, Columba livia (Columbiformes), confirms the presence of the three longer-wave classes of single cone, but also reveals the presence of a fourth class containing a visual pigment with maximum absorbance at about 409 nm, combined with a transparent droplet. No evidence was found for a fifth, ultraviolet-sensitive receptor. In the chicken, Gallus gallus (Galliformes), the cone class with a transparent droplet contains "chicken violet" with maximum absorbance at about 418 nm. The rods of all four species contain visual pigments that are spectrally similar, with maximum absorbance between about 506 and 509 nm. Noticeably, in any given species, the maximum absorbance of the rods is spectrally very similar to the maximum absorbance of the middle-wavelength-sensitive cone pigments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Subgroup of reproductive functions of progesterone mediated by progesterone receptor-B isoform.

              Progesterone regulates reproductive function through two intracellular receptors, progesterone receptor-A (PR-A) and progesterone receptor-B (PR-B), that arise from a single gene and function as transcriptional regulators of progesterone-responsive genes. Although in vitro studies show that PR isoforms can display different transcriptional regulatory activities, their physiological significance is unknown. By selective ablation of PR-A in mice, we show that the PR-B isoform modulates a subset of reproductive functions of progesterone by regulation of a subset of progesterone-responsive target genes. Thus, PR-A and PR-B are functionally distinct mediators of progesterone action in vivo and should provide suitable targets for generation of tissue-selective progestins.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                1 December 2015
                2015
                : 10
                : 12
                : e0144102
                Affiliations
                [1 ]Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Ya’an, Sichuan, P. R. China
                [2 ]Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
                [3 ]College of Animal science and technology, Sichuan Agricultural University, Ya’an, Sichuan, P. R. China
                University of Wisconsin - Madison, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: LBL QZ. Performed the experiments: DYL ERG. Analyzed the data: XLZ. Contributed reagents/materials/analysis tools: QHX. Wrote the paper: LBL. Revised the manuscript: YW HDY.

                Article
                PONE-D-15-39244
                10.1371/journal.pone.0144102
                4666490
                26624893
                f46ef5c5-c67d-4143-8b74-f090e95c9713
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 5 September 2015
                : 12 November 2015
                Page count
                Figures: 6, Tables: 0, Pages: 14
                Funding
                This work was financially supported by China Agriculture Research System, CARS-41 ( http://cyjstx.sdny.gov.cn/) and the Program from Sichuan Province, 2011NZ0099-7 and 2011NZ0073 ( http://www.sc.gov.cn/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article