44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Counter-regulation of T cell effector function by differentially activated p38

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Distinct mechanisms of p38 activation have opposing effects on T cell responses through differential regulation of NFATc1 activity.

          Abstract

          Unlike the MAP kinase (MAPK) cascade that phosphorylates p38 on the activation loop, T cell receptor (TCR) signaling results in phosphorylation on Tyr-323 (pY323, alternative pathway). Using mice expressing p38α and p38β with Y323F substitutions, we show that alternatively but not MAPK cascade-activated p38 up-regulates the transcription factors NFATc1 and IRF4, which are required for proliferation and cytokine production. Conversely, activation of p38 with UV or osmotic shock mitigated TCR-mediated activation by phosphorylation and cytoplasmic retention of NFATc1. Notably, UVB treatment of human psoriatic lesions reduced skin-infiltrating p38 pY323 + T cell IRF4 and IL-17 production. Thus, distinct mechanisms of p38 activation converge on NFATc1 with opposing effects on T cell immunity, which may underlie the beneficial effect of phototherapy on psoriasis.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma.

          T cell functional differentiation is mediated by lineage-specific transcription factors. T helper 17 (Th17) has been recently identified as a distinct Th lineage mediating tissue inflammation. Retinoic acid receptor-related orphan receptor gamma (ROR gamma) was shown to regulate Th17 differentiation; ROR gamma deficiency, however, did not completely abolish Th17 cytokine expression. Here, we report Th17 cells highly expressed another related nuclear receptor, ROR alpha, induced by transforming growth factor-beta and interleukin-6 (IL-6), which is dependent on signal transducer and activator of transcription 3. Overexpression of ROR alpha promoted Th17 differentiation, possibly through the conserved noncoding sequence 2 in Il17-Il17f locus. ROR alpha deficiency resulted in reduced IL-17 expression in vitro and in vivo. Furthermore, ROR alpha and ROR gamma coexpression synergistically led to greater Th17 differentiation. Double deficiencies in ROR alpha and ROR gamma globally impaired Th17 generation and completely protected mice against experimental autoimmune encephalomyelitis. Therefore, Th17 differentiation is directed by two lineage-specific nuclear receptors, ROR alpha and ROR gamma.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice.

            Interleukin-17 is a T cell-derived proinflammatory cytokine. This cytokine is suspected to be involved in the development of rheumatoid arthritis (RA) because this cytokine expression is augmented in synovial tissues of RA patients. The pathogenic roles of IL-17 in the development of RA, however, still remain to be elucidated. In this study, effects of IL-17 deficiency on collagen-induced arthritis (CIA) model were examined using IL-17-deficient mice (IL-17(-/-) mice). We found that CIA was markedly suppressed in IL-17(-/-) mice. IL-17 was responsible for the priming of collagen-specific T cells and collagen-specific IgG2a production. Thus, these observations suggest that IL-17 plays a crucial role in the development of CIA by activating autoantigen-specific cellular and humoral immune responses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis.

              IL-17 is a proinflammatory cytokine that activates T cells and other immune cells to produce a variety of cytokines, chemokines, and cell adhesion molecules. This cytokine is augmented in the sera and/or tissues of patients with contact dermatitis, asthma, and rheumatoid arthritis. We previously demonstrated that IL-17 is involved in the development of autoimmune arthritis and contact, delayed, and airway hypersensitivity in mice. As the expression of IL-17 is also augmented in multiple sclerosis, we examined the involvement of this cytokine in these diseases using IL-17(-/-) murine disease models. We found that the development of experimental autoimmune encephalomyelitis (EAE), the rodent model of multiple sclerosis, was significantly suppressed in IL-17(-/-) mice; these animals exhibited delayed onset, reduced maximum severity scores, ameliorated histological changes, and early recovery. T cell sensitization against myelin oligodendrocyte glycoprotein was reduced in IL-17(-/-) mice upon sensitization. The major producer of IL-17 upon treatment with myelin digodendrocyte glycopritein was CD4+ T cells rather than CD8+ T cells, and adoptive transfer of IL-17(-/-) CD4+ T cells inefficiently induced EAE in recipient mice. Notably, IL-17-producing T cells were increased in IFN-gamma(-/-) cells, while IFN-gamma-producing cells were increased in IL-17(-/-) cells, suggesting that IL-17 and IFN-gamma mutually regulate IFN-gamma and IL-17 production. These observations indicate that IL-17 rather than IFN-gamma plays a crucial role in the development of EAE.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                J. Exp. Med
                jem
                jem
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                2 June 2014
                : 211
                : 6
                : 1257-1270
                Affiliations
                [1 ]Laboratory of Immune Cell Biology, Center for Cancer Research ; [2 ]Dermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
                [3 ]Department of Dermatology, University Hospital Zurich, 8091 Zurich, Switzerland
                [4 ]Laboratory of Applied Immunobiology, University of Zurich, 8006 Zurich, Switzerland
                [5 ]Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
                Author notes
                CORRESPONDENCE Jonathan D. Ashwell: jda@ 123456pop.nci.nih.gov
                Article
                20131917
                10.1084/jem.20131917
                4042639
                24863062
                f4812b24-de47-4241-abca-00f0dc66bab7
                Copyright @ 2014

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 10 September 2013
                : 10 April 2014
                Categories
                Article

                Medicine
                Medicine

                Comments

                Comment on this article