621
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Plectus - a stepping stone in embryonic cell lineage evolution of nematodes

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Recent studies have challenged the widespread view that the pattern of embryogenesis found in Caenorhabditis elegans (clade 9) is characteristic of nematodes in general. To understand this still largely unexplored landscape of developmental events, we set out to examine more distantly related nematodes in detail for temporospatial differences in pattern formation and cell specification. Members of the genus Plectus (clade 6) seem to be suitable candidates to show variety, with certain idiosyncratic features during early development and the convenient availability of cultivatable species.

          Methods

          The study was conducted using 4-D lineage analysis, 3-D modeling of developing embryos and laser-induced ablation of individual blastomeres.

          Results

          Detailed cell lineage studies of several Plectus species reveal that pattern formation and cell fate assignment differ markedly from C. elegans. Descendants of the first somatic founder cell S1 (AB) - but not the progeny of other founder cells - demonstrate extremely variable spatial arrangements illustrating that here distinct early cell-cell interactions between invariant partners, as found in C. elegans, cannot take place. Different from C. elegans, in Plectus alternative positional variations among early S1 blastomeres resulting in a ‘situs inversus’ pattern, nevertheless give rise to adults with normal left-right asymmetries. In addition, laser ablations of early blastomeres uncover inductions between variable cell partners.

          Conclusions

          Our results suggest that embryonic cell specification in Plectus is not correlated with cell lineage but with position. With this peculiarity, Plectus appears to occupy an intermediate position between basal nematodes displaying a variable early development and the C. elegans-like invariant pattern. We suggest that indeterminate pattern formation associated with late, position-dependent fate assignment represents a plesiomorphic character among nematodes predominant in certain basal clades but lost in derived clades. Thus, the behavior of S1 cells in Plectus can be considered an evolutionary relict in a transition phase between two different developmental strategies.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils?

          The use of nucleotide and amino acid sequences allows improved understanding of the timing of evolutionary events of life on earth. Molecular estimates of divergence times are, however, controversial and are generally much more ancient than suggested by the fossil record. The limited number of genes and species explored and pervasive variations in evolutionary rates are the most likely sources of such discrepancies. Here we compared concatenated amino acid sequences of 129 proteins from 36 eukaryotes to determine the divergence times of several major clades, including animals, fungi, plants, and various protists. Due to significant variations in their evolutionary rates, and to handle the uncertainty of the fossil record, we used a Bayesian relaxed molecular clock simultaneously calibrated by six paleontological constraints. We show that, according to 95% credibility intervals, the eukaryotic kingdoms diversified 950-1,259 million years ago (Mya), animals diverged from choanoflagellates 761-957 Mya, and the debated age of the split between protostomes and deuterostomes occurred 642-761 Mya. The divergence times appeared to be robust with respect to prior assumptions and paleontological calibrations. Interestingly, these relaxed clock time estimates are much more recent than those obtained under the assumption of a global molecular clock, yet bilaterian diversification appears to be approximately 100 million years more ancient than the Cambrian boundary.
            • Record: found
            • Abstract: found
            • Article: not found

            Caenorhabditis phylogeny predicts convergence of hermaphroditism and extensive intron loss.

            Despite the prominence of Caenorhabditis elegans as a major developmental and genetic model system, its phylogenetic relationship to its closest relatives has not been resolved. Resolution of these relationships is necessary for studying the steps that underlie life history, genomic, and morphological evolution of this important system. By using data from five different nuclear genes from 10 Caenorhabditis species currently in culture, we find a well resolved phylogeny that reveals three striking patterns in the evolution of this animal group: (i) Hermaphroditism has evolved independently in C. elegans and its close relative Caenorhabditis briggsae; (ii) there is a large degree of intron turnover within Caenorhabditis, and intron losses are much more frequent than intron gains; and (iii) despite the lack of marked morphological diversity, more genetic disparity is present within this one genus than has occurred within all vertebrates.
              • Record: found
              • Abstract: found
              • Article: not found

              Developmental system drift and flexibility in evolutionary trajectories.

              J True, E Haag (2015)
              The comparative analysis of homologous characters is a staple of evolutionary developmental biology and often involves extrapolating from experimental data in model organisms to infer developmental events in non-model organisms. In order to determine the general importance of data obtained in model organisms, it is critical to know how often and to what degree similar phenotypes expressed in different taxa are formed by divergent developmental processes. Both comparative studies of distantly related species and genetic analysis of closely related species indicate that many characters known to be homologous between taxa have diverged in their morphogenetic or gene regulatory underpinnings. This process, which we call "developmental system drift" (DSD), is apparently ubiquitous and has significant implications for the flexibility of developmental evolution of both conserved and evolving characters. Current data on the population genetics and molecular mechanisms of DSD illustrate how the details of developmental processes are constantly changing within evolutionary lineages, indicating that developmental systems may possess a great deal of plasticity in their responses to natural selection.

                Author and article information

                Journal
                EvoDevo
                Evodevo
                EvoDevo
                BioMed Central
                2041-9139
                2012
                2 July 2012
                : 3
                : 13
                Affiliations
                [1 ]Biocenter, University of Cologne, Zülpicher Strasse 47b, Cologne, 50674, Germany
                [2 ]Department of Biology, Ghent University, Ledeganckstraat 35, Ghent, 9000, Belgium
                Article
                2041-9139-3-13
                10.1186/2041-9139-3-13
                3464786
                22748136
                f4900ab1-bae5-4764-b3bd-3ec000a0ca60
                Copyright ©2012 Schulze et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 2 April 2012
                : 24 May 2012
                Categories
                Research

                Developmental biology
                nematode,developmental system drift,evolution,embryogenesis,cell lineage,plectus,cell specification,c. elegans

                Comments

                Comment on this article

                Related Documents Log