11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gelatin-Based Hydrogels for Organ 3D Bioprinting

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Three-dimensional (3D) bioprinting is a family of enabling technologies that can be used to manufacture human organs with predefined hierarchical structures, material constituents and physiological functions. The main objective of these technologies is to produce high-throughput and/or customized organ substitutes (or bioartificial organs) with heterogeneous cell types or stem cells along with other biomaterials that are able to repair, replace or restore the defect/failure counterparts. Gelatin-based hydrogels, such as gelatin/fibrinogen, gelatin/hyaluronan and gelatin/alginate/fibrinogen, have unique features in organ 3D bioprinting technologies. This article is an overview of the intrinsic/extrinsic properties of the gelatin-based hydrogels in organ 3D bioprinting areas with advanced technologies, theories and principles. The state of the art of the physical/chemical crosslinking methods of the gelatin-based hydrogels being used to overcome the weak mechanical properties is highlighted. A multicellular model made from adipose-derived stem cell proliferation and differentiation in the predefined 3D constructs is emphasized. Multi-nozzle extrusion-based organ 3D bioprinting technologies have the distinguished potential to eventually manufacture implantable bioartificial organs for purposes such as customized organ restoration, high-throughput drug screening and metabolic syndrome model establishment.

          Related collections

          Most cited references 87

          • Record: found
          • Abstract: found
          • Article: not found

          Printing and prototyping of tissues and scaffolds.

           Brian Derby (2012)
          New manufacturing technologies under the banner of rapid prototyping enable the fabrication of structures close in architecture to biological tissue. In their simplest form, these technologies allow the manufacture of scaffolds upon which cells can grow for later implantation into the body. A more exciting prospect is the printing and patterning in three dimensions of all the components that make up a tissue (cells and matrix materials) to generate structures analogous to tissues; this has been termed bioprinting. Such techniques have opened new areas of research in tissue engineering and regenerative medicine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels.

            A multimaterial bio-ink method using polyethylene glycol crosslinking is presented for expanding the biomaterial palette required for 3D bioprinting of more mimetic and customizable tissue and organ constructs. Lightly crosslinked, soft hydrogels are produced from precursor solutions of various materials and 3D printed. Rheological and biological characterizations are presented, and the promise of this new bio-ink synthesis strategy is discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biocompatible inkjet printing technique for designed seeding of individual living cells.

              Inkjet printers are capable of printing at high resolution by ejecting extremely small ink drops. Established printing technology will be able to seed living cells, at micrometer resolution, in arrangements similar to biological tissues. We describe the use of a biocompatible inkjet head and our investigation of the feasibility of microseeding with living cells. Living cells are easily damaged by heat; therefore, we used an electrostatically driven inkjet system that was able to eject ink without generating significant heat. Bovine vascular endothelial cells were prepared and suspended in culture medium, and the cell suspension was used as "ink" and ejected onto culture disks. Microscopic observation showed that the endothelial cells were situated in the ejected dots in the medium, and that the number of cells in each dot was dependent on the concentration of the cell suspension and ejection frequency chosen. After the ejected cells were incubated for a few hours, they adhered to the culture disks. Using our non-heat-generating, electrostatically driven inkjet system, living cells were safely ejected onto culture disks. This microseeding technique with living cells has the potential to advance the field of tissue engineering.
                Bookmark

                Author and article information

                Journal
                Polymers (Basel)
                Polymers (Basel)
                polymers
                Polymers
                MDPI
                2073-4360
                30 August 2017
                September 2017
                : 9
                : 9
                Affiliations
                [1 ]Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; aoqiang00@ 123456163.com (Q.A.); xhtian@ 123456cmu.edu.cn (X.T.); jfan@ 123456cmu.edu.cn (J.F.); tongh007@ 123456cmu.edu.cn (H.T.); wjhou@ 123456cmu.edu.cn (W.H.); baishuling@ 123456cmu.edu.cn (S.B.)
                [2 ]Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
                Author notes
                [* ]Correspondence: wangxiaohong709@ 123456163.com or wangxiaohong@ 123456tsinghua.edu.cn ; Tel./Fax: +86-24-3190-0983
                Article
                polymers-09-00401
                10.3390/polym9090401
                6418925
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                Categories
                Review

                Comments

                Comment on this article