31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Density-based separation in multiphase systems provides a simple method to identify sickle cell disease.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although effective low-cost interventions exist, child mortality attributable to sickle cell disease (SCD) remains high in low-resource areas due, in large part, to the lack of accessible diagnostic methods. The presence of dense (ρ > 1.120 g/cm(3)) cells is characteristic of SCD. The fluid, self-assembling step-gradients in density created by aqueous multiphase systems (AMPSs) identifies SCD by detecting dense cells. AMPSs separate different forms of red blood cells by density in a microhematocrit centrifuge and provide a visual means to distinguish individuals with SCD from those with normal hemoglobin or with nondisease, sickle-cell trait in under 12 min. Visual evaluation of a simple two-phase system identified the two main subclasses of SCD [homozygous (Hb SS) and heterozygous (Hb SC)] with a sensitivity of 90% (73-98%) and a specificity of 97% (86-100%). A three-phase system identified these two types of SCD with a sensitivity of 91% (78-98%) and a specificity of 88% (74-98%). This system could also distinguish between Hb SS and Hb SC. To the authors' knowledge, this test demonstrates the first separation of cells by density with AMPSs, and the usefulness of AMPSs in point-of-care diagnostic hematology.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Global epidemiology of haemoglobin disorders and derived service indicators

          To demonstrate a method for using genetic epidemiological data to assess the needs for equitable and cost-effective services for the treatment and prevention of haemoglobin disorders. We obtained data on demographics and prevalence of gene variants responsible for haemoglobin disorders from online databases, reference resources, and published articles. A global epidemiological database for haemoglobin disorders by country was established, including five practical service indicators to express the needs for care (indicator 1) and prevention (indicators 2-5). Haemoglobin disorders present a significant health problem in 71% of 229 countries, and these 71% of countries include 89% of all births worldwide. Over 330 000 affected infants are born annually (83% sickle cell disorders, 17% thalassaemias). Haemoglobin disorders account for about 3.4% of deaths in children less than 5 years of age. Globally, around 7% of pregnant women carry b or a zero thalassaemia, or haemoglobin S, C, D Punjab or E, and over 1% of couples are at risk. Carriers and at-risk couples should be informed of their risk and the options for reducing it. Screening for haemoglobin disorders should form part of basic health services in most countries.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bacteraemia in Kenyan children with sickle-cell anaemia: a retrospective cohort and case–control study

            Summary Background In sub-Saharan Africa, more than 90% of children with sickle-cell anaemia die before the diagnosis can be made. The causes of death are poorly documented, but bacterial sepsis is probably important. We examined the risk of invasive bacterial diseases in children with sickle-cell anaemia. Methods This study was undertaken in a rural area on the coast of Kenya, with a case–control approach. We undertook blood cultures on all children younger than 14 years who were admitted from within a defined study area to Kilifi District Hospital between Aug 1, 1998, and March 31, 2008; those with bacteraemia were defined as cases. We used two sets of controls: children recruited by random sampling in the same area into several studies undertaken between Sept 1, 1998, and Nov 30, 2005; and those born consecutively within the area between May 1, 2006, and April 30, 2008. Cases and controls were tested for sickle-cell anaemia retrospectively. Findings We detected 2157 episodes of bacteraemia in 38 441 admissions (6%). 1749 of these children with bacteraemia (81%) were typed for sickle-cell anaemia, of whom 108 (6%) were positive as were 89 of 13 492 controls (1%). The organisms most commonly isolated from children with sickle-cell anaemia were Streptococcus pneumoniae (44/108 isolates; 41%), non-typhi Salmonella species (19/108; 18%), Haemophilus influenzae type b (13/108; 12%), Acinetobacter species (seven of 108; 7%), and Escherichia coli (seven of 108; 7%). The age-adjusted odds ratio for bacteraemia in children with sickle-cell anaemia was 26·3 (95% CI 14·5–47·6), with the strongest associations for S pneumoniae (33·0, 17·4–62·8), non-typhi Salmonella species (35·5, 16·4–76·8), and H influenzae type b (28·1, 12·0–65·9). Interpretation The organisms causing bacteraemia in African children with sickle-cell anaemia are the same as those in developed countries. Introduction of conjugate vaccines against S pneumoniae and H influenzae into the childhood immunisation schedules of African countries could substantially affect survival of children with sickle-cell anaemia. Funding Wellcome Trust, UK.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Measuring single-cell density.

              We have used a microfluidic mass sensor to measure the density of single living cells. By weighing each cell in two fluids of different densities, our technique measures the single-cell mass, volume, and density of approximately 500 cells per hour with a density precision of 0.001 g mL(-1). We observe that the intrinsic cell-to-cell variation in density is nearly 100-fold smaller than the mass or volume variation. As a result, we can measure changes in cell density indicative of cellular processes that would be otherwise undetectable by mass or volume measurements. Here, we demonstrate this with four examples: identifying Plasmodium falciparum malaria-infected erythrocytes in a culture, distinguishing transfused blood cells from a patient's own blood, identifying irreversibly sickled cells in a sickle cell patient, and identifying leukemia cells in the early stages of responding to a drug treatment. These demonstrations suggest that the ability to measure single-cell density will provide valuable insights into cell state for a wide range of biological processes.
                Bookmark

                Author and article information

                Journal
                Proc. Natl. Acad. Sci. U.S.A.
                Proceedings of the National Academy of Sciences of the United States of America
                1091-6490
                0027-8424
                Oct 14 2014
                : 111
                : 41
                Affiliations
                [1 ] School of Engineering and Applied Sciences.
                [2 ] Department of Chemistry and Chemical Biology, and.
                [3 ] Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118;
                [4 ] Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425; and.
                [5 ] Department of Laboratory Medicine, Children's Hospital Boston, Boston, MA 02115.
                [6 ] Department of Chemistry and Chemical Biology, and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138; gwhitesides@gmwgroup.harvard.edu.
                Article
                1414739111
                10.1073/pnas.1414739111
                25197072
                f498ac09-f0b8-48b5-a4a7-f990950ec584
                History

                cell sorting,density gradient centrifugation,erythrocytes,polymers,sickle cell anemia

                Comments

                Comment on this article