Blog
About

65
views
0
recommends
+1 Recommend
0 collections
    12
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Anti-inflammatory and anti-oxidative effects of the green tea polyphenol epigallocatechin gallate in human corneal epithelial cells

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          To determine the anti-inflammatory and anti-oxidant effects of epigallocatechin gallate (EGCG), the major polyphenol component of green tea, in human corneal epithelial cells (HCEpiC).

          Methods

          HCEpiC were challenged with interleukin-1β (IL-1β) for 18 h or hyperosmolarity (440 mOsm) for 24 h. Luminex technology was used to determine the effects of EGCG (0.3 – 30 µM) on IL-1β- or hyperosmolar-induced cytokine release into the medium. Cell metabolic activity was measured using the alamarBlue assay. Effects of EGCG on mitogen-activated protein kinase (MAPK) phosphorylation were determined by cell-based enzyme-linked immunosorbent assay (ELISA) and western blotting. Effects of EGCG on nuclear factor kappa B (NFκB) and activator protein-1 (AP-1) transcriptional activity were assessed by reporter gene assay. The effects of EGCG on glucose oxidase (GO)-induced reactive oxygen species (ROS) production was determined using the ROS probe CM-H 2DCFDA.

          Results

          Treatment of HCEpiC with 1 ng/ml IL-1β for 18 h significantly increased release of the cytokines/chemokines granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-6 (IL-6), interleukin-8 (IL-8), and monocyte chemotactic protein-1 (MCP-1), while hyperosmolarity-induced release of IL-6 and MCP-1. When cells were treated with IL-1β and EGCG or hyperosmolarity and EGCG there was a dose-dependent reduction in release of these cytokines/chemokines, with significant inhibition observed at 3–30 µM. There was no effect of EGCG on cell metabolic activity at any of the doses tested (0.3–30 µM). EGCG significantly inhibited phosphorylation of the MAPKs p38 and c-Jun N-terminal kinase (JNK), and NFκB and AP-1 transcriptional activities. There was a significant dose-dependent decrease in GO-induced ROS levels after treatment of HCEpiC with EGCG.

          Conclusions

          EGCG acts as an anti-inflammatory and anti-oxidant agent in HCEpiC and therefore may have therapeutic potential for ocular inflammatory conditions such as dry eye.

          Related collections

          Most cited references 56

          • Record: found
          • Abstract: found
          • Article: not found

          Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases.

          Multicellular organisms have three well-characterized subfamilies of mitogen-activated protein kinases (MAPKs) that control a vast array of physiological processes. These enzymes are regulated by a characteristic phosphorelay system in which a series of three protein kinases phosphorylate and activate one another. The extracellular signal-regulated kinases (ERKs) function in the control of cell division, and inhibitors of these enzymes are being explored as anticancer agents. The c-Jun amino-terminal kinases (JNKs) are critical regulators of transcription, and JNK inhibitors may be effective in control of rheumatoid arthritis. The p38 MAPKs are activated by inflammatory cytokines and environmental stresses and may contribute to diseases like asthma and autoimmunity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The definition and classification of dry eye disease: report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop (2007).

              (2007)
            The aim of the DEWS Definition and Classification Subcommittee was to provide a contemporary definition of dry eye disease, supported within a comprehensive classification framework. A new definition of dry eye was developed to reflect current understanding of the disease, and the committee recommended a three-part classification system. The first part is etiopathogenic and illustrates the multiple causes of dry eye. The second is mechanistic and shows how each cause of dry eye may act through a common pathway. It is stressed that any form of dry eye can interact with and exacerbate other forms of dry eye, as part of a vicious circle. Finally, a scheme is presented, based on the severity of the dry eye disease, which is expected to provide a rational basis for therapy. These guidelines are not intended to override the clinical assessment and judgment of an expert clinician in individual cases, but they should prove helpful in the conduct of clinical practice and research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              AP-1 as a regulator of cell life and death.

              The transcription factor AP-1 (activator protein-1) is involved in cellular proliferation, transformation and death. Using mice and cells lacking AP-1 components, the target-genes and molecular mechanisms mediating these processes were recently identified. Interestingly, the growth-promoting activity of c-Jun is mediated by repression of tumour suppressors, as well as upregulation of positive cell cycle regulators. Mostly, c-Jun is a positive regulator of cell proliferation, whereas JunB has the converse effect. The intricate relationships between the different Jun proteins, their activities and the mechanisms that mediate them will be discussed.
                Bookmark

                Author and article information

                Journal
                Mol Vis
                MV
                Molecular Vision
                Molecular Vision
                1090-0535
                2011
                18 February 2011
                : 17
                : 533-542
                Affiliations
                Global Pharmaceutical R&D, Bausch + Lomb, Rochester, NY
                Author notes
                Correspondence to: Megan Cavet, Bausch + Lomb, 1400 North Goodman Street, Rochester, NY, 14609; Phone: (585) 338-6191; FAX: (585) 338 0179; email: Megan.Cavet@ 123456bausch.com
                Article
                61 2011MOLVIS0031
                3044696
                21364905
                Copyright © 2011 Molecular Vision.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Categories
                Research Article
                Custom metadata
                Export to XML
                Cavet

                Vision sciences

                Comments

                Comment on this article