37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dilute ferromagnetic semiconductors: Physics and spintronic structures

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This review compiles results of experimental and theoretical studies on thin films and quantum structures of semiconductors with randomly distributed Mn ions, which exhibit spintronic functionalities associated with collective ferromagnetic spin ordering. Properties of p-type Mn-containing III-V as well as II-VI, V_2-VI_3, IV-VI, I-II-V, and elemental group IV semiconductors are described paying particular attention to the most thoroughly investigated system (Ga,Mn)As that supports the hole-mediated ferromagnetic order up to 190 K for the net concentration of Mn spins below 10%. Multilayer structures showing efficient spin injection and spin-related magnetotransport properties as well as enabling magnetization manipulation by strain, light, electric fields, and spin currents are presented together with their impact on metal spintronics. The challenging interplay between magnetic and electronic properties in topologically trivial and non-trivial systems is described, emphasizing the entangled roles of disorder and correlation at the carrier localization boundary. Finally, the case of dilute magnetic insulators is considered, such as (Ga,Mn)N, where low temperature spin ordering is driven by short-ranged superexchange that is ferromagnetic for certain charge states of magnetic impurities.

          Related collections

          Most cited references411

          • Record: found
          • Abstract: not found
          • Article: not found

          Interaction between thed-Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Spintronics: Fundamentals and applications

            Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Zener model description of ferromagnetism in zinc-blende magnetic semiconductors

              Ferromagnetism in manganese compound semiconductors not only opens prospects for tailoring magnetic and spin-related phenomena in semiconductors with a precision specific to III-V compounds but also addresses a question about the origin of the magnetic interactions that lead to a Curie temperature (T(C)) as high as 110 K for a manganese concentration of just 5%. Zener's model of ferromagnetism, originally proposed for transition metals in 1950, can explain T(C) of Ga(1-)(x)Mn(x)As and that of its II-VI counterpart Zn(1-)(x)Mn(x)Te and is used to predict materials with T(C) exceeding room temperature, an important step toward semiconductor electronics that use both charge and spin.
                Bookmark

                Author and article information

                Journal
                12 July 2013
                2014-04-01
                Article
                10.1103/RevModPhys.86.187
                1307.3429
                f4a2858c-08d3-4a42-bbe0-9f8707bbec37

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Rev. Mod. Phys. 86, 187-251 (2014)
                72 pages, 55 figures, this version contains referees' recommendations and is (virtually) identical to the printed one
                cond-mat.mtrl-sci

                Comments

                Comment on this article