49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Forchlorfenuron Disrupts SEPT9_i1 Filaments and Inhibits HIF-1

      research-article
      , , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Forchlorfenuron (FCF) is a synthetic plant cytokinin that has been shown to alter yeast and mammalian septin organization. Septins are a highly conserved family of GTP-binding cytoskeletal proteins. Mammalian septins are involved in diverse cellular processes including tumorigenesis. We have been studying the interaction between septin 9 isoform 1 (SEPT9_i1) and hypoxia inducible factor-1α (HIF-1α), the oxygen regulated subunit of HIF-1. HIF-1 is a key transcription factor in the hypoxic responses pathway, and its activation has been observed in carcinogenesis and numerous cancers. SEPT9_i1/HIF-1α interaction plays an important role in upregulation of HIF-1 transcriptional activity by preventing HIF-1α’s ubiquitination and degradation leading to increased tumor growth and angiogenesis. We tested the hypothesis whether FCF affects SEPT9_i1 filamentous structures and consequently HIF-1 pathway in cancer cells. We showed that FCF suppresses tumorigenic properties, including proliferation, migration and transformation, in prostate cancer cells. FCF did not alter SEPT9_i1 steady state protein expression levels but it affected its filamentous structures and subcellular localization. FCF induced degradation of HIF-1α protein in a dose- and time-dependent manner. This inhibition was also shown in other common cancer types tested. Rapid degradation of HIF-1α protein levels was accompanied by respective inhibition in HIF-1α transcriptional activity. Moreover, HIF-1α protein half-life was markedly decreased in the presence of FCF compared with that in the absence of FCF. The FCF-induced degradation of HIF-1α was mediated in a significant part via the proteasome. To the best of our knowledge, this is the first demonstration of specific manipulation of septin filaments by pharmacological means having downstream inhibitory effects on the HIF-1 pathway.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing.

          HIF (hypoxia-inducible factor) is a transcription factor that plays a pivotal role in cellular adaptation to changes in oxygen availability. In the presence of oxygen, HIF is targeted for destruction by an E3 ubiquitin ligase containing the von Hippel-Lindau tumor suppressor protein (pVHL). We found that human pVHL binds to a short HIF-derived peptide when a conserved proline residue at the core of this peptide is hydroxylated. Because proline hydroxylation requires molecular oxygen and Fe(2+), this protein modification may play a key role in mammalian oxygen sensing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Genome-wide Association of Hypoxia-inducible Factor (HIF)-1α and HIF-2α DNA Binding with Expression Profiling of Hypoxia-inducible Transcripts*

            Hypoxia-inducible factor (HIF) controls an extensive range of adaptive responses to hypoxia. To better understand this transcriptional cascade we performed genome-wide chromatin immunoprecipitation using antibodies to two major HIF-α subunits, and correlated the results with genome-wide transcript profiling. Within a tiled promoter array we identified 546 and 143 sequences that bound, respectively, to HIF-1α or HIF-2α at high stringency. Analysis of these sequences confirmed an identical core binding motif for HIF-1α and HIF-2α (RCGTG) but demonstrated that binding to this motif was highly selective, with binding enriched at distinct regions both upstream and downstream of the transcriptional start. Comparison of HIF-promoter binding data with bidirectional HIF-dependent changes in transcript expression indicated that whereas a substantial proportion of positive responses (>20% across all significantly regulated genes) are direct, HIF-dependent gene suppression is almost entirely indirect. Comparison of HIF-1α- versus HIF-2α-binding sites revealed that whereas some loci bound HIF-1α in isolation, many bound both isoforms with similar affinity. Despite high-affinity binding to multiple promoters, HIF-2α contributed to few, if any, of the transcriptional responses to acute hypoxia at these loci. Given emerging evidence for biologically distinct functions of HIF-1α versus HIF-2α understanding the mechanisms restricting HIF-2α activity will be of interest.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of cancer cell metabolism by hypoxia-inducible factor 1.

              The induction of hypoxia-inducible factor 1 (HIF-1) activity, either as a result of intratumoral hypoxia or loss-of-function mutations in the VHL gene, leads to a dramatic reprogramming of cancer cell metabolism involving increased glucose transport into the cell, increased conversion of glucose to pyruvate, and a concomitant decrease in mitochondrial metabolism and mitochondrial mass. Blocking these adaptive metabolic responses to hypoxia leads to cell death due to toxic levels of reactive oxygen species. Targeting HIF-1 or metabolic enzymes encoded by HIF-1 target genes may represent a novel therapeutic approach to cancer.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                19 August 2013
                : 8
                : 8
                : e73179
                Affiliations
                [1]Prostate Cancer Research Laboratory, Department of Urology, Tel Aviv Sourasky Medical Centre, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
                Innsbruck Medical University, Austria
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: DVO MG NJM. Performed the experiments: DVO MG. Analyzed the data: DVO MG NJM. Contributed reagents/materials/analysis tools: DVO MG NJM. Wrote the manuscript: MG NJM.

                Article
                PONE-D-13-14699
                10.1371/journal.pone.0073179
                3747094
                23977378
                f4a4763b-fc89-4e28-ad40-0d36e560cd0b
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 9 April 2013
                : 17 July 2013
                Funding
                This work was supported by the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation (AMRF) and the Israel Cancer Association. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article