37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcriptomic epidemiology of smoking: the effect of smoking on gene expression in lymphocytes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          This investigation offers insights into system-wide pathological processes induced in response to cigarette smoke exposure by determining its influences at the gene expression level.

          Methods

          We obtained genome-wide quantitative transcriptional profiles from 1,240 individuals from the San Antonio Family Heart Study, including 297 current smokers. Using lymphocyte samples, we identified 20,413 transcripts with significantly detectable expression levels, including both known and predicted genes. Correlation between smoking and gene expression levels was determined using a regression model that allows for residual genetic effects.

          Results

          With a conservative false-discovery rate of 5% we identified 323 unique genes (342 transcripts) whose expression levels were significantly correlated with smoking behavior. These genes showed significant over-representation within a range of functional categories that correspond well with known smoking-related pathologies, including immune response, cell death, cancer, natural killer cell signaling and xenobiotic metabolism.

          Conclusions

          Our results indicate that not only individual genes but entire networks of gene interaction are influenced by cigarette smoking. This is the largest in vivo transcriptomic epidemiological study of smoking to date and reveals the significant and comprehensive influence of cigarette smoke, as an environmental variable, on the expression of genes. The central importance of this manuscript is to provide a summary of the relationships between gene expression and smoking in this exceptionally large cross-sectional data set.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          The impact of smoking cessation on respiratory symptoms, lung function, airway hyperresponsiveness and inflammation.

          Smoking is the main risk factor in the development of chronic obstructive pulmonary disease (COPD), and smoking cessation is the only effective treatment for avoiding or reducing the progression of this disease. Despite the fact that smoking cessation is a very important health issue, information about the underlying mechanisms of the effects of smoking cessation on the lungs is surprisingly scarce. It is likely that the reversibility of smoke-induced changes differs between smokers without chronic symptoms, smokers with nonobstructive chronic bronchitis and smokers with COPD. This review describes how these three groups differ regarding the effects of smoking cessation on respiratory symptoms, lung function (forced expiratory volume in one second), airway hyperresponsiveness, and pathological and inflammatory changes in the lung. Smoking cessation clearly improves respiratory symptoms and bronchial hyperresponsiveness, and prevents excessive decline in lung function in all three groups. Data from well-designed studies are lacking regarding the effects on inflammation and remodelling, and the few available studies show contradictory results. In chronic obstructive pulmonary disease, a few histopathological studies suggest that airway inflammation persists in exsmokers. Nevertheless, many studies have shown that smoking cessation improves the accelerated decline in forced expiratory volume in one second, which strongly indicates that important inflammatory and/or remodelling processes are positively affected.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Smoking-induced gene expression changes in the bronchial airway are reflected in nasal and buccal epithelium

            Background Cigarette smoking is a leading cause of preventable death and a significant cause of lung cancer and chronic obstructive pulmonary disease. Prior studies have demonstrated that smoking creates a field of molecular injury throughout the airway epithelium exposed to cigarette smoke. We have previously characterized gene expression in the bronchial epithelium of never smokers and identified the gene expression changes that occur in the mainstem bronchus in response to smoking. In this study, we explored relationships in whole-genome gene expression between extrathorcic (buccal and nasal) and intrathoracic (bronchial) epithelium in healthy current and never smokers. Results Using genes that have been previously defined as being expressed in the bronchial airway of never smokers (the "normal airway transcriptome"), we found that bronchial and nasal epithelium from non-smokers were most similar in gene expression when compared to other epithelial and nonepithelial tissues, with several antioxidant, detoxification, and structural genes being highly expressed in both the bronchus and nose. Principle component analysis of previously defined smoking-induced genes from the bronchus suggested that smoking had a similar effect on gene expression in nasal epithelium. Gene set enrichment analysis demonstrated that this set of genes was also highly enriched among the genes most altered by smoking in both nasal and buccal epithelial samples. The expression of several detoxification genes was commonly altered by smoking in all three respiratory epithelial tissues, suggesting a common airway-wide response to tobacco exposure. Conclusion Our findings support a relationship between gene expression in extra- and intrathoracic airway epithelial cells and extend the concept of a smoking-induced field of injury to epithelial cells that line the mouth and nose. This relationship could potentially be utilized to develop a non-invasive biomarker for tobacco exposure as well as a non-invasive screening or diagnostic tool providing information about individual susceptibility to smoking-induced lung diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Immunomodulatory effects of cigarette smoke.

              Cigarette smoke is a major health risk factor which significantly increases the incidence of diseases including lung cancer and respiratory infections. This increased susceptibility may result from cigarette smoke-induced impairment of the immune system. While the acute effects of cigarette smoke on the immune system are less clear, chronic exposure to cigarette smoke or nicotine causes T cell unresponsiveness. This apparent T cell anergy may account for or contribute to the immunosuppressive and anti-inflammatory properties of cigarette smoke/nicotine. Nicotine-induced immunosuppression may result from its direct effects on lymphocytes, indirectly through its effects on the neuroendocrine system, or both.
                Bookmark

                Author and article information

                Journal
                BMC Med Genomics
                BMC Medical Genomics
                BioMed Central
                1755-8794
                2010
                15 July 2010
                : 3
                : 29
                Affiliations
                [1 ]Department of Genetics, Southwest Foundation for Biomedical Research, P.O. Box 760549, San Antonio, TX, USA
                [2 ]Menzies Research Institute, Private Bag 23, Hobart, TAS, Australia
                Article
                1755-8794-3-29
                10.1186/1755-8794-3-29
                2911391
                20633249
                f4a6f565-1fe4-492c-9fcc-ecb62225ddb3
                Copyright ©2010 Charlesworth et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 January 2010
                : 15 July 2010
                Categories
                Research Article

                Genetics
                Genetics

                Comments

                Comment on this article