30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Many Faces of FKBP51

      review-article
      , , , *
      Biomolecules
      MDPI
      FKBP51, Hsp90, NF-κB, GR, glucocorticoids, FK506, SAFit

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The FK506-binding protein 51 (FKBP51) has emerged as a key regulator of endocrine stress responses in mammals and as a potential therapeutic target for stress-related disorders (depression, post-traumatic stress disorder), metabolic disorders (obesity and diabetes) and chronic pain. Recently, FKBP51 has been implicated in several cellular pathways and numerous interacting protein partners have been reported. However, no consensus on the underlying molecular mechanisms has yet emerged. Here, we review the protein interaction partners reported for FKBP51, the proposed pathways involved, their relevance to FKBP51’s physiological function(s), the interplay with other FKBPs, and implications for the development of FKBP51-directed drugs.

          Related collections

          Most cited references104

          • Record: found
          • Abstract: found
          • Article: not found

          The HSP90 chaperone machinery

          The heat shock protein 90 (HSP90) chaperone machinery is a key regulator of proteostasis. Recent progress has shed light on the interactions of HSP90 with its clients and co-chaperones, and on their functional implications. This opens up new avenues for the development of drugs that target HSP90, which could be valuable for the treatment of cancers and protein-misfolding diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions.

            Although the fact that genetic predisposition and environmental exposures interact to shape development and function of the human brain and, ultimately, the risk of psychiatric disorders has drawn wide interest, the corresponding molecular mechanisms have not yet been elucidated. We found that a functional polymorphism altering chromatin interaction between the transcription start site and long-range enhancers in the FK506 binding protein 5 (FKBP5) gene, an important regulator of the stress hormone system, increased the risk of developing stress-related psychiatric disorders in adulthood by allele-specific, childhood trauma-dependent DNA demethylation in functional glucocorticoid response elements of FKBP5. This demethylation was linked to increased stress-dependent gene transcription followed by a long-term dysregulation of the stress hormone system and a global effect on the function of immune cells and brain areas associated with stress regulation. This identification of molecular mechanisms of genotype-directed long-term environmental reactivity will be useful for designing more effective treatment strategies for stress-related disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Signaling via the NFκB system.

              The nuclear factor kappa B (NFκB) family of transcription factors is a key regulator of immune development, immune responses, inflammation, and cancer. The NFκB signaling system (defined by the interactions between NFκB dimers, IκB regulators, and IKK complexes) is responsive to a number of stimuli, and upon ligand-receptor engagement, distinct cellular outcomes, appropriate to the specific signal received, are set into motion. After almost three decades of study, many signaling mechanisms are well understood, rendering them amenable to mathematical modeling, which can reveal deeper insights about the regulatory design principles. While other reviews have focused on upstream, receptor proximal signaling (Hayden MS, Ghosh S. Signaling to NF-κB. Genes Dev 2004, 18:2195-2224; Verstrepen L, Bekaert T, Chau TL, Tavernier J, Chariot A, Beyaert R. TLR-4, IL-1R and TNF-R signaling to NF-κB: variations on a common theme. Cell Mol Life Sci 2008, 65:2964-2978), and advances through computational modeling (Basak S, Behar M, Hoffmann A. Lessons from mathematically modeling the NF-κB pathway. Immunol Rev 2012, 246:221-238; Williams R, Timmis J, Qwarnstrom E. Computational models of the NF-KB signalling pathway. Computation 2014, 2:131), in this review we aim to summarize the current understanding of the NFκB signaling system itself, the molecular mechanisms, and systems properties that are key to its diverse biological functions, and we discuss remaining questions in the field. WIREs Syst Biol Med 2016, 8:227-241. doi: 10.1002/wsbm.1331 For further resources related to this article, please visit the WIREs website.
                Bookmark

                Author and article information

                Journal
                Biomolecules
                Biomolecules
                biomolecules
                Biomolecules
                MDPI
                2218-273X
                21 January 2019
                January 2019
                : 9
                : 1
                : 35
                Affiliations
                Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany; haehle@ 123456drugdiscovery.chemie.tu-darmstadt.de (A.H.); merz@ 123456drugdiscovery.chemie.tu-darmstadt.de (S.M.); meyners@ 123456drugdiscovery.chemie.tu-darmstadt.de (C.M.)
                Author notes
                [* ]Correspondence: hausch@ 123456drugdiscovery.chemie.tu-darmstadt.de ; Tel.: +49-6151-16-21245
                Author information
                https://orcid.org/0000-0002-3710-8838
                Article
                biomolecules-09-00035
                10.3390/biom9010035
                6359276
                30669684
                f4a7a4d9-a07b-413c-adbb-ab97dda7c3a1
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 07 December 2018
                : 14 January 2019
                Categories
                Review

                fkbp51,hsp90,nf-κb,gr,glucocorticoids,fk506,safit
                fkbp51, hsp90, nf-κb, gr, glucocorticoids, fk506, safit

                Comments

                Comment on this article