199
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The influence of intersensory discrepancy on visuo-haptic integration is similar in 6-year-old children and adults

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          When participants are given the opportunity to simultaneously feel an object and see it through a magnifying or reducing lens, adults estimate object size to be in-between visual and haptic size. Studies with young children, however, seem to demonstrate that their estimates are dominated by a single sense. In the present study, we examined whether this age difference observed in previous studies, can be accounted for by the large discrepancy between felt and seen size in the stimuli used in those studies. In addition, we studied the processes involved in combining the visual and haptic inputs. Adults and 6-year-old children judged objects that were presented to vision, haptics or simultaneously to both senses. The seen object length was reduced or magnified by different lenses. In the condition inducing large intersensory discrepancies, children's judgments in visuo-haptic conditions were almost dominated by vision, whereas adults weighted vision just by ~40%. Neither the adults' nor the children's discrimination thresholds were predicted by models of visuo-haptic integration. With smaller discrepancies, the children's visual weight approximated that of the adults and both the children's and adults' discrimination thresholds were well predicted by an integration model, which assumes that both visual and haptic inputs contribute to each single judgment. We conclude that children integrate seemingly corresponding multisensory information in similar ways as adults do, but focus on a single sense, when information from different senses is strongly discrepant.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          The ventriloquist effect results from near-optimal bimodal integration.

          Ventriloquism is the ancient art of making one's voice appear to come from elsewhere, an art exploited by the Greek and Roman oracles, and possibly earlier. We regularly experience the effect when watching television and movies, where the voices seem to emanate from the actors' lips rather than from the actual sound source. Originally, ventriloquism was explained by performers projecting sound to their puppets by special techniques, but more recently it is assumed that ventriloquism results from vision "capturing" sound. In this study we investigate spatial localization of audio-visual stimuli. When visual localization is good, vision does indeed dominate and capture sound. However, for severely blurred visual stimuli (that are poorly localized), the reverse holds: sound captures vision. For less blurred stimuli, neither sense dominates and perception follows the mean position. Precision of bimodal localization is usually better than either the visual or the auditory unimodal presentation. All the results are well explained not by one sense capturing the other, but by a simple model of optimal combination of visual and auditory information.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Illusions. What you see is what you hear.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Measurement and modeling of depth cue combination: in defense of weak fusion.

              Various visual cues provide information about depth and shape in a scene. When several of these cues are simultaneously available in a single location in the scene, the visual system attempts to combine them. In this paper, we discuss three key issues relevant to the experimental analysis of depth cue combination in human vision: cue promotion, dynamic weighting of cues, and robustness of cue combination. We review recent psychophysical studies of human depth cue combination in light of these issues. We organize the discussion and review as the development of a model of the depth cue combination process termed modified weak fusion (MWF). We relate the MWF framework to Bayesian theories of cue combination. We argue that the MWF model is consistent with previous experimental results and is a parsimonious summary of these results. While the MWF model is motivated by normative considerations, it is primarily intended to guide experimental analysis of depth cue combination in human vision. We describe experimental methods, analogous to perturbation analysis, that permit us to analyze depth cue combination in novel ways. In particular these methods allow us to investigate the key issues we have raised. We summarize recent experimental tests of the MWF framework that use these methods.
                Bookmark

                Author and article information

                Journal
                Front Psychol
                Front Psychol
                Front. Psychol.
                Frontiers in Psychology
                Frontiers Media S.A.
                1664-1078
                30 January 2014
                2014
                : 5
                : 57
                Affiliations
                Department for Developmental Psychology, Institute for Psychology, Justus-Liebig University Giessen, Germany
                Author notes

                Edited by: Christine Sutter, RWTH Aachen University, Germany

                Reviewed by: Chie Takahashi, University of Birmingham, UK; Priscila Caçola, University of Texas at Arlington, USA

                *Correspondence: Bianca Jovanovic, Department for Developmental Psychology, Institute for Psychology, Giessen University, Otto-Behaghel-Str., 10F, 35394 Giessen, Germany e-mail: bianca.jovanovic@ 123456psychol.uni-giessen.de

                This article was submitted to Cognition, a section of the journal Frontiers in Psychology.

                Article
                10.3389/fpsyg.2014.00057
                3906500
                f4ab199c-70ba-4a56-aadd-5accbc78a634
                Copyright © 2014 Jovanovic and Drewing.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 27 October 2013
                : 16 January 2014
                Page count
                Figures: 5, Tables: 1, Equations: 7, References: 36, Pages: 11, Words: 9390
                Categories
                Psychology
                Original Research Article

                Clinical Psychology & Psychiatry
                intersensory integration,multisensory,integration,child development,visuo-haptic display

                Comments

                Comment on this article