+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Babes in the wood – a unique window into sea scorpion ontogeny


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Few studies on eurypterids have taken into account morphological changes that occur throughout postembryonic development. Here two species of eurypterid are described from the Pragian Beartooth Butte Formation of Cottonwood Canyon in Wyoming and included in a phylogenetic analysis. Both species comprise individuals from a number of instars, and this allows for changes that occur throughout their ontogeny to be documented, and how ontogenetically variable characters can influence phylogenetic analysis to be tested.


          The two species of eurypterid are described as Jaekelopterus howelli (Kjellesvig-Waering and Størmer, 1952) and Strobilopterus proteus sp. nov. Phylogenetic analysis places them within the Pterygotidae and Strobilopteridae respectively, both families within the Eurypterina. Jaekelopterus howelli shows positive allometry of the cheliceral denticles throughout ontogeny, while a number of characteristics including prosomal appendage length, carapace shape, lateral eye position, and relative breadth all vary during the growth of Strobilopterus proteus.


          The ontogeny of Strobilopterus proteus shares much in common with that of modern xiphosurans, however certain characteristics including apparent true direct development suggest a closer affinity to arachnids. The ontogenetic development of the genital appendage also supports the hypothesis that the structure is homologous to the endopods of the trunk limbs of other arthropods. Including earlier instars in the phylogenetic analysis is shown to destabilise the retrieved topology. Therefore, coding juveniles as individual taxa in an analysis is shown to be actively detrimental and alternative ways of coding ontogenetic data into phylogenetic analyses should be explored.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Ontogeny discombobulates phylogeny: paedomorphosis and higher-level salamander relationships.

          Evolutionary developmental biology ("evo-devo") has revolutionized evolutionary biology but has had relatively little impact on systematics. We show that similar large-scale developmental changes in distantly related lineages can dramatically mislead phylogenetic analyses based on morphological data. Salamanders are important model systems in many fields of biology and are of special interest in that many species are paedomorphic and thus never complete metamorphosis. A recent study of higher-level salamander phylogeny placed most paedomorphic families in a single clade based on morphological data. Here, we use new molecular and morphological data to show that this result most likely was caused by the misleading effects of paedomorphosis. We also provide a well-supported estimate of higher-level salamander relationships based on combined molecular and morphological data. Many authors have suggested that paedomorphosis may be problematic in studies of salamander phylogeny, but this hypothesis has never been tested with a rigorous phylogenetic analysis. We find that the misleading effects of paedomorphosis on phylogenetic analysis go beyond the sharing of homoplastic larval traits by paedomorphic adults, and the problem therefore is not solved by simply excluding suspected paedomorphic characters. Instead, two additional factors are critically important in causing paedomorphic species to be phylogenetically "misplaced": (1) the absence of clade-specific synapomorphies that develop during metamorphosis in nonpaedomorphic taxa and allow their "correct" placement and (2) parallel adaptive changes associated with the aquatic habitat of the larval stage. Our results suggest that the effects of paedomorphosis on phylogenetic analyses may be complex, difficult to detect, and can lead to results that are both wrong and statistically well supported by parsimony and Bayesian analyses.
            • Record: found
            • Abstract: found
            • Article: not found

            The ontogeny of trilobite segmentation: a comparative approach

            Ontogenetic stages of trilobites have traditionally been recognized on the basis of the development of exoskeletal segmentation. The established protaspid, meraspid, and holaspid phases relate specifically to the development of articulated joints between exoskeletal elements. Transitions between these phases were marked by the first and last appearances of new trunk segment articulations. Here we propose an additional and complementary ontogenetic scheme based on the generation of new trunk segments. It includes an anamorphic phase during which new trunk segments appeared, and an epimorphic phase during which the number of segments in the trunk remained constant. In some trilobites an ontogenetic boundary can also be recognized at the first appearance of morphologically distinct posterior trunk segments. Comparison of the phase boundaries of these different aspects of segment ontogeny highlights rich variation in the segmentation process among Trilobita. Cases in which the onset of the holaspid phase preceded onset of the epimorphic phase are here termed protarthrous , synchronous onset of both phases is termed synarthromeric , and onset of the epimorphic phase before onset of the holaspid phase is termed protomeric . Although these conditions varied among close relatives and perhaps even intraspecifically in some cases, particular conditions may have been prevalent within some clades. Trilobites displayed hemianamorphic development that was accomplished over an extended series of juvenile and mature free-living instars. Although developmental schedules varied markedly among species, morphological transitions during trilobite development were generally regular, limited in scope, and extended over a large number of instars when compared with those of many living arthropods. Hemianamorphic, direct development with modest change between instars is also seen among basal members of the Crustacea, basal myriapods, pycnogonids, and in some fossil chelicerates. This mode may represent the ancestral condition of euarthropod development.
              • Record: found
              • Abstract: not found
              • Article: not found

              Testing the quality of the fossil record: Paleontological knowledge is improving


                Author and article information

                BMC Evol Biol
                BMC Evol. Biol
                BMC Evolutionary Biology
                BioMed Central
                10 May 2013
                : 13
                : 98
                [1 ]Paleontological Institute and Department of Geology, University of Kansas, 1475 Jayhawk Boulevard, Lawrence, KS 66045, USA
                [2 ]Palaeontology Department, Natural History Museum, Cromwell Road, London SW7, 5BD, UK
                Copyright ©2013 Lamsdell and Selden; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                : 11 December 2012
                : 25 April 2013
                Research Article

                Evolutionary Biology
                palaeozoic,pragian,eurypterida,strobilopterus,syntomopterella,jaekelopterus,cottonwood canyon,development,instars,phylogeny


                Comment on this article