74
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dorsal and Ventral Attention Systems : Distinct Neural Circuits but Collaborative Roles

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The idea of two separate attention networks in the human brain for the voluntary deployment of attention and the reorientation to unexpected events, respectively, has inspired an enormous amount of research over the past years. In this review, we will reconcile these theoretical ideas on the dorsal and ventral attentional system with recent empirical findings from human neuroimaging experiments and studies in stroke patients. We will highlight how novel methods—such as the analysis of effective connectivity or the combination of neurostimulation with functional magnetic resonance imaging—have contributed to our understanding of the functionality and interaction of the two systems. We conclude that neither of the two networks controls attentional processes in isolation and that the flexible interaction between both systems enables the dynamic control of attention in relation to top-down goals and bottom-up sensory stimulation. We discuss which brain regions potentially govern this interaction according to current task demands.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Control of goal-directed and stimulus-driven attention in the brain.

          We review evidence for partially segregated networks of brain areas that carry out different attentional functions. One system, which includes parts of the intraparietal cortex and superior frontal cortex, is involved in preparing and applying goal-directed (top-down) selection for stimuli and responses. This system is also modulated by the detection of stimuli. The other system, which includes the temporoparietal cortex and inferior frontal cortex, and is largely lateralized to the right hemisphere, is not involved in top-down selection. Instead, this system is specialized for the detection of behaviourally relevant stimuli, particularly when they are salient or unexpected. This ventral frontoparietal network works as a 'circuit breaker' for the dorsal system, directing attention to salient events. Both attentional systems interact during normal vision, and both are disrupted in unilateral spatial neglect.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The reorienting system of the human brain: from environment to theory of mind.

            Survival can depend on the ability to change a current course of action to respond to potentially advantageous or threatening stimuli. This "reorienting" response involves the coordinated action of a right hemisphere dominant ventral frontoparietal network that interrupts and resets ongoing activity and a dorsal frontoparietal network specialized for selecting and linking stimuli and responses. At rest, each network is distinct and internally correlated, but when attention is focused, the ventral network is suppressed to prevent reorienting to distracting events. These different patterns of recruitment may reflect inputs to the ventral attention network from the locus coeruleus/norepinephrine system. While originally conceptualized as a system for redirecting attention from one object to another, recent evidence suggests a more general role in switching between networks, which may explain recent evidence of its involvement in functions such as social cognition.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Dynamic causal modelling

                Bookmark

                Author and article information

                Journal
                Neuroscientist
                Neuroscientist
                NRO
                spnro
                The Neuroscientist
                SAGE Publications (Sage CA: Los Angeles, CA )
                1073-8584
                1089-4098
                April 2014
                April 2014
                : 20
                : 2
                : 150-159
                Affiliations
                [1 ]Cognitive Neuroscience, Institute of Neuroscience & Medicine (INM-3), Research Centre Juelich, Germany
                [2 ]Wellcome Trust Centre for Neuroimaging, University College London, UK
                [3 ]Center for Mind and Brain and Department of Psychology, University of California Davis, USA
                [4 ]Department of Neurology, University Hospital Cologne, Germany
                Author notes
                [*]Simone Vossel, Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Leo-Brandt-Str. 5, 52425 Juelich, Germany. Email: s.vossel@ 123456fz-juelich.de
                Article
                10.1177_1073858413494269
                10.1177/1073858413494269
                4107817
                23835449
                f4c4e19e-5bb8-42df-a636-e5b15ec75ecb
                © The Author(s) 2013

                This article is distributed under the terms of the Creative Commons Attribution 3.0 License ( http://www.creativecommons.org/licenses/by/3.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page ( http://www.uk.sagepub.com/aboutus/openaccess.htm).

                History
                Categories
                Articles

                spatial attention,intraparietal sulcus,temporoparietal junction,spatial neglect,attentional networks

                Comments

                Comment on this article