8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Application of Bioengineered Materials in the Surgical Management of Heart Failure

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The epicardial surface of the heart is readily accessible during cardiac surgery and presents an opportunity for therapeutic intervention for cardiac repair and regeneration. As an important anatomic niche for endogenous mechanisms of repair, targeting the epicardium using decellularized extracellular matrix (ECM) bioscaffold therapy may provide the necessary environmental cues to promote functional recovery. Following ischemic injury to the heart caused by myocardial infarction (MI), epicardium derived progenitor cells (EPDCs) become activated and migrate to the site of injury. EPDC differentiation has been shown to contribute to endothelial cell, cardiac fibroblast, cardiomyocyte, and vascular smooth muscle cell populations. Post-MI, it is largely the activation of cardiac fibroblasts and the resultant dysregulation of ECM turnover which leads to maladaptive structural cardiac remodeling and loss of cardiac function. Decellularized ECM bioscaffolds not only provide structural support, but have also been shown to act as a bioactive reservoir for growth factors, cytokines, and matricellular proteins capable of attenuating maladaptive cardiac remodeling. Targeting the epicardium post-MI using decellularized ECM bioscaffold therapy may provide the necessary bioinductive cues to promote differentiation toward a pro-regenerative phenotype and attenuate cardiac fibroblast activation. There is an opportunity to leverage the clinical benefits of this innovative technology with an aim to improve the prognosis of patients suffering from progressive heart failure. An enhanced understanding of the utility of decellularized ECM bioscaffolds in epicardial repair will facilitate their growth and transition into clinical practice. This review will provide a summary of decellularized ECM bioscaffolds being developed for epicardial infarct repair in coronary artery bypass graft (CABG) surgery.

          Related collections

          Most cited references106

          • Record: found
          • Abstract: found
          • Article: not found

          Cardiac Fibrosis: The Fibroblast Awakens.

          Myocardial fibrosis is a significant global health problem associated with nearly all forms of heart disease. Cardiac fibroblasts comprise an essential cell type in the heart that is responsible for the homeostasis of the extracellular matrix; however, upon injury, these cells transform to a myofibroblast phenotype and contribute to cardiac fibrosis. This remodeling involves pathological changes that include chamber dilation, cardiomyocyte hypertrophy and apoptosis, and ultimately leads to the progression to heart failure. Despite the critical importance of fibrosis in cardiovascular disease, our limited understanding of the cardiac fibroblast impedes the development of potential therapies that effectively target this cell type and its pathological contribution to disease progression. This review summarizes current knowledge regarding the origins and roles of fibroblasts, mediators and signaling pathways known to influence fibroblast function after myocardial injury, as well as novel therapeutic strategies under investigation to attenuate cardiac fibrosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms.

            Bone marrow cell therapy is reported to contribute to collateral formation through cell incorporation into new or remodeling vessels. However, the possible role of a paracrine contribution to this effect is less well characterized. Murine marrow-derived stromal cells (MSCs) were purified by magnetic bead separation of cultured bone marrow. The release of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), placental growth factor (PlGF), and monocyte chemoattractant protein-1 (MCP-1) was demonstrated by analysis of MSC conditioned media (MSC-CM). MSC-CM enhanced proliferation of endothelial cells and smooth muscle cells in a dose-dependent manner; anti-VEGF and anti-FGF antibodies only partly attenuated these effects. Balb/C mice (n=10) underwent distal femoral artery ligation, followed by adductor muscle injection of 1x10(6) MSCs 24 hours later. Compared with controls injected with media (n=10) or mature endothelial cells (n=8), distal limb perfusion improved, and mid-thigh conductance vessels increased in number and total cross-sectional area. MSC injection improved limb function and appearance, reduced the incidence of auto-amputation, and attenuated muscle atrophy and fibrosis. After injection, labeled MSCs were seen dispersed between muscle fibers but were not seen incorporated into mature collaterals. Injection of MSCs increased adductor muscle levels of bFGF and VEGF protein compared with controls. Finally, colocalization of VEGF and transplanted MSCs within adductor tissue was demonstrated. MSCs secrete a wide array of arteriogenic cytokines. MSCs can contribute to collateral remodeling through paracrine mechanisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease

              Fibroblasts comprise the largest cell population in the myocardium. In heart disease, the number of fibroblasts is increased either by replication of the resident myocardial fibroblasts, migration and transformation of circulating bone marrow cells, or by transformation of endothelial/epithelial cells into fibroblasts and myofibroblasts. The primary function of fibroblasts is to produce structural proteins that comprise the extracellular matrix (ECM). This can be a constructive process; however, hyperactivity of cardiac fibroblasts can result in excess production and deposition of ECM proteins in the myocardium, known as fibrosis, with adverse effects on cardiac structure and function. In addition to being the primary source of ECM proteins, fibroblasts produce a number of cytokines, peptides, and enzymes among which matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitor of metalloproteinases (TIMPs), directly impact the ECM turnover and homeostasis. Function of fibroblasts can also in turn be regulated by MMPs and TIMPs. In this review article, we will focus on the function of cardiac fibroblasts in the context of ECM formation, homeostasis and remodeling in the heart. We will discuss the origins and multiple roles of cardiac fibroblasts in myocardial remodeling in different types of heart disease in patients and in animal models. We will further provide an overview of what we have learned from experimental animal models and genetically modified mice with altered expression of ECM regulatory proteins, MMPs and TIMPs.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cardiovasc Med
                Front Cardiovasc Med
                Front. Cardiovasc. Med.
                Frontiers in Cardiovascular Medicine
                Frontiers Media S.A.
                2297-055X
                20 August 2019
                2019
                : 6
                : 123
                Affiliations
                Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary , Calgary, AB, Canada
                Author notes

                Edited by: Sharan Ramaswamy, Florida International University, United States

                Reviewed by: Sveva Bollini, University of Genoa, Italy; Alexander Von Gise, Hannover Medical School, Germany

                *Correspondence: Paul W. M. Fedak paul.fedak@ 123456gmail.com

                This article was submitted to Cardiovascular Biologics and Regenerative Medicine, a section of the journal Frontiers in Cardiovascular Medicine

                Article
                10.3389/fcvm.2019.00123
                6710326
                31482096
                f4d16354-c130-4bfd-aca0-8b3b08f68bc3
                Copyright © 2019 Pattar, Fatehi Hassanabad and Fedak.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 17 June 2019
                : 06 August 2019
                Page count
                Figures: 3, Tables: 0, Equations: 0, References: 143, Pages: 10, Words: 8052
                Categories
                Cardiovascular Medicine
                Review

                extracellular matrix,biomaterials,epicardium,heart failure,cardiac surgery,bioscaffold,myocardial infarction

                Comments

                Comment on this article