106
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The GRADE System for Rating Clinical Guidelines

      discussion
      1 , 2 , 3 , *
      PLoS Medicine
      Public Library of Science

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Brian Kavanagh critiques the GRADE system of grading guidelines, arguing that even though it has evolved through the Evidence-Based Medicine movement, there is no evidence that GRADE itself is reliable.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial.

          The need for lung protection is universally accepted, but the optimal level of positive end-expiratory pressure (PEEP) in patients with acute lung injury (ALI) or acute respiratory distress syndrome remains debated. To compare the effect on outcome of a strategy for setting PEEP aimed at increasing alveolar recruitment while limiting hyperinflation to one aimed at minimizing alveolar distension in patients with ALI. A multicenter randomized controlled trial of 767 adults (mean [SD] age, 59.9 [15.4] years) with ALI conducted in 37 intensive care units in France from September 2002 to December 2005. Tidal volume was set at 6 mL/kg of predicted body weight in both strategies. Patients were randomly assigned to a moderate PEEP strategy (5-9 cm H(2)O) (minimal distension strategy; n = 382) or to a level of PEEP set to reach a plateau pressure of 28 to 30 cm H(2)O (increased recruitment strategy; n = 385). The primary end point was mortality at 28 days. Secondary end points were hospital mortality at 60 days, ventilator-free days, and organ failure-free days at 28 days. The 28-day mortality rate in the minimal distension group was 31.2% (n = 119) vs 27.8% (n = 107) in the increased recruitment group (relative risk, 1.12 [95% confidence interval, 0.90-1.40]; P = .31). The hospital mortality rate in the minimal distension group was 39.0% (n = 149) vs 35.4% (n = 136) in the increased recruitment group (relative risk, 1.10 [95% confidence interval, 0.92-1.32]; P = .30). The increased recruitment group compared with the minimal distension group had a higher median number of ventilator-free days (7 [interquartile range {IQR}, 0-19] vs 3 [IQR, 0-17]; P = .04) and organ failure-free days (6 [IQR, 0-18] vs 2 [IQR, 0-16]; P = .04). This strategy also was associated with higher compliance values, better oxygenation, less use of adjunctive therapies, and larger fluid requirements. A strategy for setting PEEP aimed at increasing alveolar recruitment while limiting hyperinflation did not significantly reduce mortality. However, it did improve lung function and reduced the duration of mechanical ventilation and the duration of organ failure. clinicaltrials.gov Identifier: NCT00188058.
            • Record: found
            • Abstract: found
            • Article: not found

            Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial.

            Low-tidal-volume ventilation reduces mortality in critically ill patients with acute lung injury and acute respiratory distress syndrome. Instituting additional strategies to open collapsed lung tissue may further reduce mortality. To compare an established low-tidal-volume ventilation strategy with an experimental strategy based on the original "open-lung approach," combining low tidal volume, lung recruitment maneuvers, and high positive-end-expiratory pressure. Randomized controlled trial with concealed allocation and blinded data analysis conducted between August 2000 and March 2006 in 30 intensive care units in Canada, Australia, and Saudi Arabia. Nine hundred eighty-three consecutive patients with acute lung injury and a ratio of arterial oxygen tension to inspired oxygen fraction not exceeding 250. The control strategy included target tidal volumes of 6 mL/kg of predicted body weight, plateau airway pressures not exceeding 30 cm H2O, and conventional levels of positive end-expiratory pressure (n = 508). The experimental strategy included target tidal volumes of 6 mL/kg of predicted body weight, plateau pressures not exceeding 40 cm H2O, recruitment maneuvers, and higher positive end-expiratory pressures (n = 475). All-cause hospital mortality. Eighty-five percent of the 983 study patients met criteria for acute respiratory distress syndrome at enrollment. Tidal volumes remained similar in the 2 groups, and mean positive end-expiratory pressures were 14.6 (SD, 3.4) cm H2O in the experimental group vs 9.8 (SD, 2.7) cm H2O among controls during the first 72 hours (P < .001). All-cause hospital mortality rates were 36.4% and 40.4%, respectively (relative risk [RR], 0.90; 95% confidence interval [CI], 0.77-1.05; P = .19). Barotrauma rates were 11.2% and 9.1% (RR, 1.21; 95% CI, 0.83-1.75; P = .33). The experimental group had lower rates of refractory hypoxemia (4.6% vs 10.2%; RR, 0.54; 95% CI, 0.34-0.86; P = .01), death with refractory hypoxemia (4.2% vs 8.9%; RR, 0.56; 95% CI, 0.34-0.93; P = .03), and previously defined eligible use of rescue therapies (5.1% vs 9.3%; RR, 0.61; 95% CI, 0.38-0.99; P = .045). For patients with acute lung injury and acute respiratory distress syndrome, a multifaceted protocolized ventilation strategy designed to recruit and open the lung resulted in no significant difference in all-cause hospital mortality or barotrauma compared with an established low-tidal-volume protocolized ventilation strategy. This "open-lung" strategy did appear to improve secondary end points related to hypoxemia and use of rescue therapies. clinicaltrials.gov Identifier: NCT00182195.
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Systems for grading the quality of evidence and the strength of recommendations I: Critical appraisal of existing approaches The GRADE Working Group

              Background A number of approaches have been used to grade levels of evidence and the strength of recommendations. The use of many different approaches detracts from one of the main reasons for having explicit approaches: to concisely characterise and communicate this information so that it can easily be understood and thereby help people make well-informed decisions. Our objective was to critically appraise six prominent systems for grading levels of evidence and the strength of recommendations as a basis for agreeing on characteristics of a common, sensible approach to grading levels of evidence and the strength of recommendations. Methods Six prominent systems for grading levels of evidence and strength of recommendations were selected and someone familiar with each system prepared a description of each of these. Twelve assessors independently evaluated each system based on twelve criteria to assess the sensibility of the different approaches. Systems used by 51 organisations were compared with these six approaches. Results There was poor agreement about the sensibility of the six systems. Only one of the systems was suitable for all four types of questions we considered (effectiveness, harm, diagnosis and prognosis). None of the systems was considered usable for all of the target groups we considered (professionals, patients and policy makers). The raters found low reproducibility of judgements made using all six systems. Systems used by 51 organisations that sponsor clinical practice guidelines included a number of minor variations of the six systems that we critically appraised. Conclusions All of the currently used approaches to grading levels of evidence and the strength of recommendations have important shortcomings.

                Author and article information

                Journal
                PLoS Med
                PLoS
                plosmed
                PLoS Medicine
                Public Library of Science (San Francisco, USA )
                1549-1277
                1549-1676
                September 2009
                September 2009
                15 September 2009
                : 6
                : 9
                : e1000094
                Affiliations
                [1 ]Departments of Critical Care Medicine and Anesthesia, Hospital for Sick Children, Toronto, Canada
                [2 ]Program in Physiology and Experimental Medicine, The Research Institute, Hospital for Sick Children, Toronto, Canada
                [3 ]Departments of Anesthesia, Medicine & Physiology, University of Toronto, Toronto, Canada
                Author notes

                ICMJE criteria for authorship read and met: BPK. Wrote the first draft of the paper: BPK.

                Article
                09-PLME-PF-0219R1
                10.1371/journal.pmed.1000094
                2735782
                19753107
                f4d4f1f3-1fb5-41ae-8af4-26265029e23e
                Brian P. Kavanagh. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                Page count
                Pages: 5
                Categories
                Policy Forum
                Evidence-Based Healthcare/Clinical Decision-Making

                Medicine
                Medicine

                Comments

                Comment on this article

                Related Documents Log