55
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Humanized Foxp2 accelerates learning by enhancing transitions from declarative to procedural performance.

      Proceedings of the National Academy of Sciences of the United States of America
      Amino Acid Substitution, Animals, Corpus Striatum, physiology, Dopamine, metabolism, Female, Forkhead Transcription Factors, chemistry, genetics, Humans, Learning, Long-Term Synaptic Depression, Male, Maze Learning, Mice, Mice, Transgenic, Motor Skills, RNA, Messenger, Recombinant Proteins, Repressor Proteins, Species Specificity, Transcriptome

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The acquisition of language and speech is uniquely human, but how genetic changes might have adapted the nervous system to this capacity is not well understood. Two human-specific amino acid substitutions in the transcription factor forkhead box P2 (FOXP2) are outstanding mechanistic candidates, as they could have been positively selected during human evolution and as FOXP2 is the sole gene to date firmly linked to speech and language development. When these two substitutions are introduced into the endogenous Foxp2 gene of mice (Foxp2(hum)), cortico-basal ganglia circuits are specifically affected. Here we demonstrate marked effects of this humanization of Foxp2 on learning and striatal neuroplasticity. Foxp2(hum/hum) mice learn stimulus-response associations faster than their WT littermates in situations in which declarative (i.e., place-based) and procedural (i.e., response-based) forms of learning could compete during transitions toward proceduralization of action sequences. Striatal districts known to be differently related to these two modes of learning are affected differently in the Foxp2(hum/hum) mice, as judged by measures of dopamine levels, gene expression patterns, and synaptic plasticity, including an NMDA receptor-dependent form of long-term depression. These findings raise the possibility that the humanized Foxp2 phenotype reflects a different tuning of corticostriatal systems involved in declarative and procedural learning, a capacity potentially contributing to adapting the human brain for speech and language acquisition.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular evolution of FOXP2, a gene involved in speech and language.

          Language is a uniquely human trait likely to have been a prerequisite for the development of human culture. The ability to develop articulate speech relies on capabilities, such as fine control of the larynx and mouth, that are absent in chimpanzees and other great apes. FOXP2 is the first gene relevant to the human ability to develop language. A point mutation in FOXP2 co-segregates with a disorder in a family in which half of the members have severe articulation difficulties accompanied by linguistic and grammatical impairment. This gene is disrupted by translocation in an unrelated individual who has a similar disorder. Thus, two functional copies of FOXP2 seem to be required for acquisition of normal spoken language. We sequenced the complementary DNAs that encode the FOXP2 protein in the chimpanzee, gorilla, orang-utan, rhesus macaque and mouse, and compared them with the human cDNA. We also investigated intraspecific variation of the human FOXP2 gene. Here we show that human FOXP2 contains changes in amino-acid coding and a pattern of nucleotide polymorphism, which strongly suggest that this gene has been the target of selection during recent human evolution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Putting a spin on the dorsal-ventral divide of the striatum.

            Since its conception three decades ago, the idea that the striatum consists of a dorsal sensorimotor part and a ventral portion processing limbic information has sparked a quest for functional correlates and anatomical characteristics of the striatal divisions. But this classic dorsal-ventral distinction might not offer the best view of striatal function. Anatomy and neurophysiology show that the two striatal areas have the same basic structure and that sharp boundaries are absent. Behaviorally, a distinction between dorsolateral and ventromedial seems most valid, in accordance with a mediolateral functional zonation imposed on the striatum by its excitatory cortical, thalamic and amygdaloid inputs. Therefore, this review presents a synthesis between the dorsal-ventral distinction and the more mediolateral-oriented functional striatal gradient.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dynamic reorganization of striatal circuits during the acquisition and consolidation of a skill.

              The learning of new skills is characterized by an initial phase of rapid improvement in performance and a phase of more gradual improvements as skills are automatized and performance asymptotes. Using in vivo striatal recordings, we observed region-specific changes in neural activity during the different phases of skill learning, with the associative or dorsomedial striatum being preferentially engaged early in training and the sensorimotor or dorsolateral striatum being engaged later in training. Ex vivo recordings from medium spiny striatal neurons in brain slices of trained mice revealed that the changes observed in vivo corresponded to regional- and training-specific changes in excitatory synaptic transmission in the striatum. Furthermore, the potentiation of glutamatergic transmission observed in dorsolateral striatum after extensive training was preferentially expressed in striatopallidal neurons, rather than striatonigral neurons. These findings demonstrate that region- and pathway-specific plasticity sculpts the circuits involved in the performance of the skill as it becomes automatized.
                Bookmark

                Author and article information

                Comments

                Comment on this article