36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The anthocyanins in black currants regulate postprandial hyperglycaemia primarily by inhibiting α-glucosidase while other phenolics modulate salivary α-amylase, glucose uptake and sugar transporters

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d1684592e107">The hypoglycaemic effects of two Ribes sp. i.e., anthocyanin-rich black currants (BC) were compared to green currants (GC), which are low in anthocyanins to establish which compounds are involved in the regulation of postprandial glycaemia. We determined the effect of the currants on inhibiting carbohydrate digestive enzymes (α-amylase, α-glucosidase), intestinal sugar absorption and transport across CaCo-2 cells. The digestion of these currants was modelled using in vitro gastrointestinal digestion (IVGD) to identify the metabolites present in the digested extracts by LC-MS/MS. Freeze-dried BC and IVDG extracts inhibited yeast α-glucosidase activity (P&lt;.0001) at lower concentrations than acarbose, whereas GC and IVDG GC at the same concentrations showed no inhibition. BC and GC both showed significant inhibitory effects on salivary α-amylase (P&lt;.0001), glucose uptake (P&lt;.0001) and the mRNA expression of sugar transporters (P&lt;.0001). Taken together this suggests that the anthocyanins which are high in BC have their greatest effect on postprandial hyperglycaemia by inhibiting α-glucosidase activity. Phytochemical analysis identified the phenolics in the currants and confirmed that freeze-dried BC contained higher concentrations of anthocyanins compared to GC (39.80 vs. 9.85 g/kg dry weight). Specific phenolics were also shown to inhibit salivary α-amylase, α-glucosidase, and glucose uptake. However, specific anthocyanins identified in BC which were low in GC were shown to inhibit α-glucosidase. In conclusion the anthocyanins in BC appear to regulate postprandial hyperglycaemia primarily but not solely by inhibiting α-glucosidase while other phenolics modulate salivary α-amylase, glucose uptake and sugar transporters which together could lower the associated risk of developing type-2 diabetes. </p>

          Related collections

          Author and article information

          Journal
          The Journal of Nutritional Biochemistry
          The Journal of Nutritional Biochemistry
          Elsevier BV
          09552863
          April 2020
          April 2020
          : 78
          : 108325
          Article
          10.1016/j.jnutbio.2019.108325
          31952012
          f4d7b4b3-ee5c-4757-8907-37bd74e1f3c7
          © 2020

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article