26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hydrodynamics with Triangle Anomalies

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We consider the hydrodynamic regime of theories with quantum anomalies for global currents. We show that a hitherto discarded term in the conserve current is not only allowed by symmetries, but is in fact required by triangle anomalies and the second law of thermodynamics. This term leads to a number of new effects, one of which is chiral separation in a rotating fluid at nonzero chemical potential. The new kinetic coefficients can be expressed, in a unique fashion, through the anomalies coefficients and the equation of state. We briefly discuss the relevance of this new hydrodynamic term for physical situations, including heavy ion collisions.

          Related collections

          Most cited references3

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Nonlinear Fluid Dynamics from Gravity

          Black branes in AdS5 appear in a four parameter family labeled by their velocity and temperature. Promoting these parameters to Goldstone modes or collective coordinate fields -- arbitrary functions of the coordinates on the boundary of AdS5 -- we use Einstein's equations together with regularity requirements and boundary conditions to determine their dynamics. The resultant equations turn out to be those of boundary fluid dynamics, with specific values for fluid parameters. Our analysis is perturbative in the boundary derivative expansion but is valid for arbitrary amplitudes. Our work may be regarded as a derivation of the nonlinear equations of boundary fluid dynamics from gravity. As a concrete application we find an explicit expression for the expansion of this fluid stress tensor including terms up to second order in the derivative expansion.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Phases of R-charged Black Holes, Spinning Branes and Strongly Coupled Gauge Theories

            We study the thermodynamic stability of charged black holes in gauged supergravity theories in D=5, D=4 and D=7. We find explicitly the location of the Hawking-Page phase transition between charged black holes and the pure anti-de Sitter space-time, both in the grand-canonical ensemble, where electric potentials are held fixed, and in the canonical ensemble, where total charges are held fixed. We also find the explicit local thermodynamic stability constraints for black holes with one non-zero charge. In the grand-canonical ensemble, there is in general a region of phase space where neither the anti-de Sitter space-time is dynamically preferred, nor are the charged black holes thermodynamically stable. But in the canonical ensemble, anti-de Sitter space-time is always dynamically preferred in the domain where black holes are unstable. We demonstrate the equivalence of large R-charged black holes in D=5, D=4 and D=7 with spinning near-extreme D3-, M2- and M5-branes, respectively. The mass, the charges and the entropy of such black holes can be mapped into the energy above extremality, the angular momenta and the entropy of the corresponding branes. We also note a peculiar numerological sense in which the grand-canonical stability constraints for large charge black holes in D=4 and D=7 are dual, and in which the D=5 constraints are self-dual.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Fluid dynamics of R-charged black holes

              We construct electrically charged AdS_5 black hole solutions whose charge, mass and boost-parameters vary slowly with the space-time coordinates. From the perspective of the dual theory, these are equivalent to hydrodynamic configurations with varying chemical potential, temperature and velocity fields. We compute the boundary theory transport coefficients associated with a derivative expansion of the energy momentum tensor and R-charge current up to second order. In particular, we find a first order transport coefficient associated with the axial component of the current.
                Bookmark

                Author and article information

                Journal
                2009-06-27
                2009-07-13
                Article
                10.1103/PhysRevLett.103.191601
                0906.5044
                f4f8fa73-4107-4e62-8c32-b09f84d7e31b

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                INT-PUB-09-030
                4 pages; v2: error in Eq.(4) corrected
                hep-th hep-ph nucl-th

                High energy & Particle physics,Nuclear physics
                High energy & Particle physics, Nuclear physics

                Comments

                Comment on this article