50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Global fire emissions estimates during 1997–2016

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Climate, land use, and other anthropogenic and natural drivers have the potential to influence fire dynamics in many regions. To develop a mechanistic understanding of the changing role of these drivers and their impact on atmospheric composition, long-term fire records are needed that fuse information from different satellite and in situ data streams. Here we describe the fourth version of the Global Fire Emissions Database (GFED) and quantify global fire emissions patterns during 1997–2016. The modeling system, based on the Carnegie–Ames–Stanford Approach (CASA) biogeochemical model, has several modifications from the previous version and uses higher quality input datasets. Significant upgrades include (1) new burned area estimates with contributions from small fires, (2) a revised fuel consumption parameterization optimized using field observations, (3) modifications that improve the representation of fuel consumption in frequently burning landscapes, and (4) fire severity estimates that better represent continental differences in burning processes across boreal regions of North America and Eurasia. The new version has a higher spatial resolution (0.25°) and uses a different set of emission factors that separately resolves trace gas and aerosol emissions from temperate and boreal forest ecosystems. Global mean carbon emissions using the burned area dataset with small fires (GFED4s) were 2.2  ×  10<sup>15</sup> grams of carbon per year (Pg C yr<sup>−1</sup>) during 1997–2016, with a maximum in 1997 (3.0 Pg C yr<sup>−1</sup>) and minimum in 2013 (1.8 Pg C yr<sup>−1</sup>). These estimates were 11 % higher than our previous estimates (GFED3) during 1997–2011, when the two datasets overlapped. This net increase was the result of a substantial increase in burned area (37 %), mostly due to the inclusion of small fires, and a modest decrease in mean fuel consumption (−19 %) to better match estimates from field studies, primarily in savannas and grasslands. For trace gas and aerosol emissions, differences between GFED4s and GFED3 were often larger due to the use of revised emission factors. If small fire burned area was excluded (GFED4 without the <q>s</q> for small fires), average emissions were 1.5 Pg C yr<sup>−1</sup>. The addition of small fires had the largest impact on emissions in temperate North America, Central America, Europe, and temperate Asia. This small fire layer carries substantial uncertainties; improving these estimates will require use of new burned area products derived from high-resolution satellite imagery. Our revised dataset provides an internally consistent set of burned area and emissions that may contribute to a better understanding of multi-decadal changes in fire dynamics and their impact on the Earth system. GFED data are available from <a href="http://www.globalfiredata.org" title="" class="ref">http://www.globalfiredata.org</a>.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Fire in the Earth system.

          Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire have always coexisted, our capacity to manage fire remains imperfect and may become more difficult in the future as climate change alters fire regimes. This risk is difficult to assess, however, because fires are still poorly represented in global models. Here, we discuss some of the most important issues involved in developing a better understanding of the role of fire in the Earth system.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Terrestrial ecosystem production: A process model based on global satellite and surface data

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning

                Bookmark

                Author and article information

                Journal
                Earth System Science Data
                Earth Syst. Sci. Data
                Copernicus GmbH
                1866-3516
                2017
                September 12 2017
                : 9
                : 2
                : 697-720
                Article
                10.5194/essd-9-697-2017
                f50022c4-2f48-4f76-ba3e-6f214be8fce6
                © 2017

                https://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article