28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cardiotoxicity of immune checkpoint inhibitors

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cardiac toxicity after conventional antineoplastic drugs (eg, anthracyclines) has historically been a relevant issue. In addition, targeted therapies and biological molecules can also induce cardiotoxicity. Immune checkpoint inhibitors are a novel class of anticancer drugs, distinct from targeted or tumour type-specific therapies. Cancer immunotherapy with immune checkpoint blockers (ie, monoclonal antibodies targeting cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), programmed cell death 1 (PD-1) and its ligand (PD-L1)) has revolutionised the management of a wide variety of malignancies endowed with poor prognosis. These inhibitors unleash antitumour immunity, mediate cancer regression and improve the survival in a percentage of patients with different types of malignancies, but can also produce a wide spectrum of immune-related adverse events. Interestingly, PD-1 and PD-L1 are expressed in rodent and human cardiomyocytes, and early animal studies have demonstrated that CTLA-4 and PD-1 deletion can cause autoimmune myocarditis. Cardiac toxicity has largely been underestimated in recent reviews of toxicity of checkpoint inhibitors, but during the last years several cases of myocarditis and fatal heart failure have been reported in patients treated with checkpoint inhibitors alone and in combination. Here we describe the mechanisms of the most prominent checkpoint inhibitors, specifically ipilimumab (anti-CTLA-4, the godfather of checkpoint inhibitors) patient and monoclonal antibodies targeting PD-1 (eg, nivolumab, pembrolizumab) and PD-L1 (eg, atezolizumab). We also discuss what is known and what needs to be done about cardiotoxicity of checkpoint inhibitors in patients with cancer. Severe cardiovascular effects associated with checkpoint blockade introduce important issues for oncologists, cardiologists and immunologists.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          The blockade of immune checkpoints in cancer immunotherapy.

          Among the most promising approaches to activating therapeutic antitumour immunity is the blockade of immune checkpoints. Immune checkpoints refer to a plethora of inhibitory pathways hardwired into the immune system that are crucial for maintaining self-tolerance and modulating the duration and amplitude of physiological immune responses in peripheral tissues in order to minimize collateral tissue damage. It is now clear that tumours co-opt certain immune-checkpoint pathways as a major mechanism of immune resistance, particularly against T cells that are specific for tumour antigens. Because many of the immune checkpoints are initiated by ligand-receptor interactions, they can be readily blocked by antibodies or modulated by recombinant forms of ligands or receptors. Cytotoxic T-lymphocyte-associated antigen 4 (CTLA4) antibodies were the first of this class of immunotherapeutics to achieve US Food and Drug Administration (FDA) approval. Preliminary clinical findings with blockers of additional immune-checkpoint proteins, such as programmed cell death protein 1 (PD1), indicate broad and diverse opportunities to enhance antitumour immunity with the potential to produce durable clinical responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            CTLA-4 and PD-1 Pathways

            Supplemental Digital Content is available in the text.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Enhancement of antitumor immunity by CTLA-4 blockade.

              One reason for the poor immunogenicity of many tumors may be that they cannot provide signals for CD28-mediated costimulation necessary to fully activate T cells. It has recently become apparent that CTLA-4, a second counterreceptor for the B7 family of costimulatory molecules, is a negative regulator of T cell activation. Here, in vivo administration of antibodies to CTLA-4 resulted in the rejection of tumors, including preestablished tumors. Furthermore, this rejection resulted in immunity to a secondary exposure to tumor cells. These results suggest that blockade of the inhibitory effects of CTLA-4 can allow for, and potentiate, effective immune responses against tumor cells.
                Bookmark

                Author and article information

                Journal
                ESMO Open
                ESMO Open
                esmoopen
                esmoopen
                ESMO Open
                BMJ Publishing Group (BMA House, Tavistock Square, London, WC1H 9JR )
                2059-7029
                2017
                26 October 2017
                : 2
                : 4
                : e000247
                Affiliations
                [1 ]departmentDepartment of Translational Medical Sciences , University of Naples Federico II , Naples, Italy
                [2 ]departmentCenter for Basic and Clinical Immunology Research (CISI) , University of Naples Federico II , Naples, Italy
                [3 ]departmentWAO Center of Excellence , University of Naples Federico II , Naples, Italy
                [4 ]departmentDepartment of Public Health, Section of Hygiene , University of Naples Federico II , Naples, Italy
                [5 ]Monaldi Hospital Pharmacy , Naples, Italy
                [6 ]departmentInstitute of Experimental Endocrinology and Oncology ‘Gaetano Salvatore’ , National Research Council (CNR) , Naples, Italy
                Author notes
                [Correspondence to ] Dr Gilda Varricchi; gildanet@ 123456gmail.com
                Article
                esmoopen-2017-000247
                10.1136/esmoopen-2017-000247
                5663252
                29104763
                f5029cff-01f4-4b0f-8b87-0f80567d1804
                © European Society for Medical Oncology (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

                This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

                History
                : 12 July 2017
                : 24 July 2017
                Funding
                Funded by: TIMING Project;
                Funded by: Ricerca di Ateneo;
                Funded by: Regione Campania CISI-Lab;
                Funded by: CRÈME Project;
                Categories
                Review
                1506
                Custom metadata
                unlocked

                cancer,cardiotoxicity,immune checkpoints,ctla-4,melanoma,myocarditis,pd-1,pd-l1

                Comments

                Comment on this article