14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Stress and obesity: the role of the hypothalamic–pituitary–adrenal axis in metabolic disease :

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chronic stress, combined with positive energy balance, may be a contributor to the increased risk for obesity, especially upper body obesity, and other metabolic diseases. This association may be mediated by alterations in the hypothalamic-pituitary-adrenal (HPA) axis. In this review, we summarize the major research that has been conducted on the role of the HPA axis in obesity and metabolic disease. Dysregulation in the HPA axis has been associated with upper body obesity, but data are inconsistent, possibly due to methodological differences across studies. In addition to systemic effects, changes in local cortisol metabolism in adipose tissue may also influence the risk for obesity. HPA axis dysregulation may be the causal link between conditions such as maternal malnutrition and sleep deprivation with metabolic disease. The present review provides evidence for the relationship between chronic stress, alterations in HPA activity, and obesity. Understanding these associations and its interactions with other factors will be important in developing effective treatments for obesity and related metabolic diseases.

          Related collections

          Most cited references 77

          • Record: found
          • Abstract: found
          • Article: not found

          Early life risk factors for obesity in childhood: cohort study.

          To identify risk factors in early life (up to 3 years of age) for obesity in children in the United Kingdom. Prospective cohort study. Avon longitudinal study of parents and children, United Kingdom. 8234 children in cohort aged 7 years and a subsample of 909 children (children in focus) with data on additional early growth related risk factors for obesity. Obesity at age 7 years, defined as a body mass index (3) 95th centile relative to reference data for the UK population in 1990. Eight of 25 putative risk factors were associated with a risk of obesity in the final models: parental obesity (both parents: adjusted odds ratio, 10.44, 95% confidence interval 5.11 to 21.32), very early (by 43 months) body mass index or adiposity rebound (15.00, 5.32 to 42.30), more than eight hours spent watching television per week at age 3 years (1.55, 1.13 to 2.12), catch-up growth (2.60, 1.09 to 6.16), standard deviation score for weight at age 8 months (3.13, 1.43 to 6.85) and 18 months (2.65, 1.25 to 5.59); weight gain in first year (1.06, 1.02 to 1.10 per 100 g increase); birth weight, per 100 g (1.05, 1.03 to 1.07); and short (< 10.5 hours) sleep duration at age 3 years (1.45, 1.10 to 1.89). Eight factors in early life are associated with an increased risk of obesity in childhood.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Obesity in young men after famine exposure in utero and early infancy.

            In a historical cohort study of 300,000 19-year-old men exposed to the Dutch famine of 1944-45 and examined at military induction, we tested the hypothesis that prenatal and early postnatal nutrition determines subsequent obesity. Outcomes were opposite depending on the time of exposure. During the last trimester of pregnancy and the first months of life, exposure produced significantly lower obesity rates (P less than 0.005). This result is consistent with the inference that nutritional deprivation affected a critical period of development for adipose-tissue cellularity. During the first half of pregnancy, however, exposure resulted in significantly higher obesity rates (P less than 0.0005). This observation is consistent with the inference that nutritional deprivation affected the differentiation of hypothalamic centers regulating food intake and growth, and that subsequent increased food availability produced an accumulation of excess fat in an organism growing to its predetermined maximum size.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Leptin levels are dependent on sleep duration: relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin.

              Sleep plays an important role in energy homeostasis. The present study tests the hypothesis that circulating levels of leptin, a hormone that signals energy balance to the brain, are influenced by sleep duration. We also analyzed associations between leptin and sympathovagal balance, cortisol, TSH, glucose, and insulin under different bedtime conditions. Twenty-four-hour hormonal and glucose profiles were sampled at frequent intervals, and sympathovagal balance was estimated from heart rate variability in 11 subjects studied after 6 d of 4-h bedtimes (mean +/- sem of sleep duration during last 2 d: 3 h and 49 +/- 2 min) and after 6 d of 12-h bedtimes (sleep: 9 h and 03 +/- 15 min). A study with 8-h bedtimes was performed 1 yr later (sleep: 6 h and 52 +/- 10 min). Caloric intake and activity levels were carefully controlled in all studies. Mean levels, maximal levels, and rhythm amplitude of leptin were decreased (-19%, -26%, and -20%, respectively) during sleep restriction compared with sleep extension. The decrease in leptin levels was concomitant with an elevation of sympathovagal balance. The effects of sleep duration on leptin were quantitatively associated with alterations of the cortisol and TSH profiles and were accompanied by an elevation of postbreakfast homeostasis model assessment values. Measures of perceived stress were not increased during sleep restriction. During the study with 8-h bedtimes, hormonal and metabolic parameters were intermediate between those observed with 4-h and 12-h bedtimes. In conclusion, sleep modulates a major component of the neuroendocrine control of appetite.
                Bookmark

                Author and article information

                Journal
                Current Opinion in Endocrinology, Diabetes and Obesity
                Current Opinion in Endocrinology, Diabetes and Obesity
                Ovid Technologies (Wolters Kluwer Health)
                1752-296X
                2009
                October 2009
                : 16
                : 5
                : 340-346
                Article
                10.1097/MED.0b013e32832fa137
                2858344
                19584720
                © 2009

                Comments

                Comment on this article