5
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ceftriaxone and clavulanic acid induce antiallodynia and anti-inflammatory effects in rats using the carrageenan model

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Ceftriaxone (CFX) and clavulanic acid (CA) are 2 β-lactam molecules widely used as antibiotics. However, several reports of their antiallodynic properties have been published in recent years. Although this effect has been considered mostly due to a GLT1 overexpression, these molecules have also been proven to induce direct immunomodulation. In this work, we determine the acute analgesic effect of CFX and CA in an inflammatory pain model and assess if their administration may induce anti-inflammatory effects.

          Methods

          The carrageenan (Carr) test was used as an inflammatory pain model. Both mechanical and thermal responses were analyzed after CFX and CA administration at different times. A plethysmometer was used to determine inflammation. Also, TNF-α and IL-10 serum concentrations were determined by enzyme-linked immunosorbent assay.

          Results

          Both CFX and CA induced a significant thermal antiallodynic effect 3 and 24 h after administration. Furthermore, CA induced a mechanical antiallodynic effect 30, 60, and 90 min after administration. Moreover, a significant anti-inflammatory effect was found for both molecules 24 h after Carr injection. Also, both CA and CFX modulated TNF-α and IL-10 serum concentrations at different times.

          Conclusion

          Our results provide evidence that both CFX and CA cause an analgesic effect on a Carr inflammatory pain model and that said analgesic effect differs between each β-lactam molecule. Furthermore, this effect may be related to an anti-inflammatory effect of both molecules and a direct TNF-α and IL-10 serum concentration modulation.

          Related collections

          Most cited references 34

          • Record: found
          • Abstract: not found
          • Article: not found

          Ethical guidelines for investigations of experimental pain in conscious animals.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia.

            A method to measure cutaneous hyperalgesia to thermal stimulation in unrestrained animals is described. The testing paradigm uses an automated detection of the behavioral end-point; repeated testing does not contribute to the development of the observed hyperalgesia. Carrageenan-induced inflammation resulted in significantly shorter paw withdrawal latencies as compared to saline-treated paws and these latency changes corresponded to a decreased thermal nociceptive threshold. Both the thermal method and the Randall-Selitto mechanical method detected dose-related hyperalgesia and its blockade by either morphine or indomethacin. However, the thermal method showed greater bioassay sensitivity and allowed for the measurement of other behavioral parameters in addition to the nociceptive threshold.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man.

               Gary Bennett,  Y. Xie (1988)
              A peripheral mononeuropathy was produced in adult rats by placing loosely constrictive ligatures around the common sciatic nerve. The postoperative behavior of these rats indicated that hyperalgesia, allodynia and, possibly, spontaneous pain (or dysesthesia) were produced. Hyperalgesic responses to noxious radiant heat were evident on the second postoperative day and lasted for over 2 months. Hyperalgesic responses to chemogenic pain were also present. The presence of allodynia was inferred from the nocifensive responses evoked by standing on an innocuous, chilled metal floor or by innocuous mechanical stimulation, and by the rats' persistence in holding the hind paw in a guarded position. The presence of spontaneous pain was suggested by a suppression of appetite and by the frequent occurrence of apparently spontaneous nocifensive responses. The affected hind paw was abnormally warm or cool in about one-third of the rats. About one-half of the rats developed grossly overgrown claws on the affected side. Experiments with this animal model may advance our understanding of the neural mechanisms of neuropathic pain disorders in humans.
                Bookmark

                Author and article information

                Journal
                J Pain Res
                J Pain Res
                Journal of Pain Research
                Journal of Pain Research
                Dove Medical Press
                1178-7090
                2018
                21 May 2018
                : 11
                : 977-985
                Affiliations
                [1 ]Pharmacology Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, México
                [2 ]Research Department, Mexican Faculty of Medicine, La Salle University, Mexico City, México
                [3 ]Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, México
                [4 ]Pain Clinic, National Cancer Institute of Mexico, Mexico City, México
                Author notes
                Correspondence: Abraham Ochoa-Aguilar, Facultad Mexicana de Medicina Universidad La Salle, Fuentes #17, Tlalpan, 14000, Mexico City, México, Tel +52 55 2559 3012, Email dr.abraham.ochoa@ 123456gmail.com
                Article
                jpr-11-977
                10.2147/JPR.S154661
                5968784
                © 2018 Ochoa-Aguilar et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Original Research

                Comments

                Comment on this article