68
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Human genetics of tuberculosis: a long and winding road

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Only a small fraction of individuals exposed to Mycobacterium tuberculosis develop clinical tuberculosis (TB). Over the past century, epidemiological studies have shown that human genetic factors contribute significantly to this interindividual variability, and molecular progress has been made over the past decade for at least two of the three key TB-related phenotypes: (i) a major locus controlling resistance to infection with M. tuberculosis has been identified, and (ii) proof of principle that severe TB of childhood can result from single-gene inborn errors of interferon-γ immunity has been provided; genetic association studies with pulmonary TB in adulthood have met with more limited success. Future genetic studies of these three phenotypes could consider subgroups of subjects defined on the basis of individual (e.g. age at TB onset) or environmental (e.g. pathogen strain) factors. Progress may also be facilitated by further methodological advances in human genetics. Identification of the human genetic variants controlling the various stages and forms of TB is critical for understanding TB pathogenesis. These findings should have major implications for TB control, in the definition of improved prevention strategies, the optimization of vaccines and clinical trials and the development of novel treatments aiming to restore deficient immune responses.

          Related collections

          Most cited references92

          • Record: found
          • Abstract: found
          • Article: not found

          Principles and challenges of genomewide DNA methylation analysis.

          Methylation of cytosine bases in DNA provides a layer of epigenetic control in many eukaryotes that has important implications for normal biology and disease. Therefore, profiling DNA methylation across the genome is vital to understanding the influence of epigenetics. There has been a revolution in DNA methylation analysis technology over the past decade: analyses that previously were restricted to specific loci can now be performed on a genome-scale and entire methylomes can be characterized at single-base-pair resolution. However, there is such a diversity of DNA methylation profiling techniques that it can be challenging to select one. This Review discusses the different approaches and their relative merits and introduces considerations for data analysis.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Tuberculosis.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genetic dissection of immunity to mycobacteria: the human model.

              Humans are exposed to a variety of environmental mycobacteria (EM), and most children are inoculated with live Bacille Calmette-Guérin (BCG) vaccine. In addition, most of the world's population is occasionally exposed to human-borne mycobacterial species, which are less abundant but more virulent. Although rarely pathogenic, mildly virulent mycobacteria, including BCG and most EM, may cause a variety of clinical diseases. Mycobacterium tuberculosis, M. leprae, and EM M. ulcerans are more virulent, causing tuberculosis, leprosy, and Buruli ulcer, respectively. Remarkably, only a minority of individuals develop clinical disease, even if infected with virulent mycobacteria. The interindividual variability of clinical outcome is thought to result in part from variability in the human genes that control host defense. In this well-defined microbiological and clinical context, the principles of mouse immunology and the methods of human genetics can be combined to facilitate the genetic dissection of immunity to mycobacteria. The natural infections are unique to the human model, not being found in any of the animal models of experimental infection. We review current genetic knowledge concerning the simple and complex inheritance of predisposition to mycobacterial diseases in humans. Rare patients with Mendelian disorders have been found to be vulnerable to BCG, a few EM, and M. tuberculosis. Most cases of presumed Mendelian susceptibility to these and other mycobacterial species remain unexplained. In the general population leprosy and tuberculosis have been shown to be associated with certain human genetic polymorphisms and linked to certain chromosomal regions. The causal vulnerability genes themselves have yet to be identified and their pathogenic alleles immunologically validated. The studies carried out to date have been fruitful, initiating the genetic dissection of protective immunity against a variety of mycobacterial species in natural conditions of infection. The human model has potential uses beyond the study of mycobacterial infections and may well become a model of choice for the investigation of immunity to infectious agents.
                Bookmark

                Author and article information

                Journal
                Philos Trans R Soc Lond B Biol Sci
                Philos. Trans. R. Soc. Lond., B, Biol. Sci
                RSTB
                royptb
                Philosophical Transactions of the Royal Society B: Biological Sciences
                The Royal Society
                0962-8436
                1471-2970
                19 June 2014
                19 June 2014
                : 369
                : 1645 , Theme Issue ‘After 2015: infectious diseases in a new era of health and development’ compiled and edited by Christopher Dye and Anne O'Garra
                : 20130428
                Affiliations
                [1 ]Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163 , 75015 Paris, France
                [2 ]Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, 75015 Paris, France
                [3 ]St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University , New York, NY 10065, USA
                [4 ]Genetics Unit, Military Hospital Mohamed V , Hay Riad, 10100 Rabat, Morocco
                [5 ]Clinical Immunology Unit, Department of Pediatric Infectious Diseases, Hospital-University Center Ibn Rochd, King Hassan II University , Casablanca, Morocco
                [6 ]Howard Hughes Medical Institute, The Rockefeller University , New York, NY 10065, USA
                [7 ]McGill International TB Centre, The Research Institute of the McGill University Health Centre , Montreal, Quebec, CanadaH3G 1A4
                Author notes
                Article
                rstb20130428
                10.1098/rstb.2013.0428
                4024222
                24821915
                f5066de5-1fc1-4f3c-86f5-fb286220c671

                © 2014 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original author and source are credited.

                History
                Categories
                197
                199
                87
                Articles
                Review Article
                Custom metadata
                June 19, 2014

                Philosophy of science
                primary tuberculosis,pulmonary tuberculosis,latent tuberculosis infection,mendelian predisposition,complex genetic predisposition,genetic variant

                Comments

                Comment on this article