9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Electrophysiological characteristics of feeding-related neurons after taste avoidance Pavlovian conditioning in Lymnaea stagnalis

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Taste avoidance conditioning (TAC) was carried out on the pond snail, Lymnaea stagnalis. The conditional stimulus (CS) was sucrose which elicits feeding behavior; while the unconditional stimulus (US) was a tactile stimulus to the head which causes feeding to be suppressed. The neuronal circuit that drives feeding behavior in Lymnaea is well worked out. We therefore compared the physiological characteristics on 3 classes of neurons involved with feeding behavior especially in response to the CS in conditioned vs. control snails. The cerebral giant cell (CGC) modulates feeding behavior, N1 medial neuron (N1M) is one of the central pattern generator neurons that organizes feeding behavior, while B3 is a motor neuron active during the rasp phase of feeding. We found the resting membrane potential in CGC was hyperpolarized significantly in conditioned snails but impulse activity remained the same between conditioned vs. control snails. There was, however, a significant increase in spontaneous activity and a significant depolarization of N1M’s resting membrane potential in conditioned snails. These changes in N1M activity as a result of training are thought to be due to withdrawal interneuron RPeD11 altering the activity of the CGCs. Finally, in B3 there was: 1) a significant decrease in the amplitude and the frequency of the post-synaptic potentials; 2) a significant hyperpolarization of resting membrane potential in conditioned snails; and 3) a disappearance of bursting activity typically initiated by the CS. These neuronal modifications are consistent with the behavioral phenotype elicited by the CS following conditioning.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Role of delayed nonsynaptic neuronal plasticity in long-term associative memory.

          It is now well established that persistent nonsynaptic neuronal plasticity occurs after learning and, like synaptic plasticity, it can be the substrate for long-term memory. What still remains unclear, though, is how nonsynaptic plasticity contributes to the altered neural network properties on which memory depends. Understanding how nonsynaptic plasticity is translated into modified network and behavioral output therefore represents an important objective of current learning and memory research. By using behavioral single-trial classical conditioning together with electrophysiological analysis and calcium imaging, we have explored the cellular mechanisms by which experience-induced nonsynaptic electrical changes in a neuronal soma remote from the synaptic region are translated into synaptic and circuit level effects. We show that after single-trial food-reward conditioning in the snail Lymnaea stagnalis, identified modulatory neurons that are extrinsic to the feeding network become persistently depolarized between 16 and 24 hr after training. This is delayed with respect to early memory formation but concomitant with the establishment and duration of long-term memory. The persistent nonsynaptic change is extrinsic to and maintained independently of synaptic effects occurring within the network directly responsible for the generation of feeding. Artificial membrane potential manipulation and calcium-imaging experiments suggest a novel mechanism whereby the somal depolarization of an extrinsic neuron recruits command-like intrinsic neurons of the circuit underlying the learned behavior. We show that nonsynaptic plasticity in an extrinsic modulatory neuron encodes information that enables the expression of long-term associative memory, and we describe how this information can be translated into modified network and behavioral output.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Involvement of insulin-like peptide in long-term synaptic plasticity and long-term memory of the pond snail Lymnaea stagnalis.

            The pond snail Lymnaea stagnalis is capable of learning taste aversion and consolidating this learning into long-term memory (LTM) that is called conditioned taste aversion (CTA). Previous studies showed that some molluscan insulin-related peptides (MIPs) were upregulated in snails exhibiting CTA. We thus hypothesized that MIPs play an important role in neurons underlying the CTA-LTM consolidation process. To examine this hypothesis, we first observed the distribution of MIP II, a major peptide of MIPs, and MIP receptor and determined the amounts of their mRNAs in the CNS. MIP II was only observed in the light green cells in the cerebral ganglia, but the MIP receptor was distributed throughout the entire CNS, including the buccal ganglia. Next, when we applied exogenous mammalian insulin, secretions from MIP-containing cells or partially purified MIPs, to the isolated CNS, we observed a long-term change in synaptic efficacy (i.e., enhancement) of the synaptic connection between the cerebral giant cell (a key interneuron for CTA) and the B1 motor neuron (a buccal motor neuron). This synaptic enhancement was blocked by application of an insulin receptor antibody to the isolated CNS. Finally, injection of the insulin receptor antibody into the snail before CTA training, while not blocking the acquisition of taste aversion learning, blocked the memory consolidation process; thus, LTM was not observed. These data suggest that MIPs trigger changes in synaptic connectivity that may be correlated with the consolidation of taste aversion learning into CTA-LTM in the Lymnaea CNS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Persistent sodium current is a nonsynaptic substrate for long-term associative memory.

              Although synaptic plasticity is widely regarded as the primary mechanism of memory [1], forms of nonsynaptic plasticity, such as increased somal or dendritic excitability or membrane potential depolarization, also have been implicated in learning in both vertebrate and invertebrate experimental systems [2-7]. Compared to synaptic plasticity, however, there is much less information available on the mechanisms of specific types of nonsynaptic plasticity involved in well-defined examples of behavioral memory. Recently, we have shown that learning-induced somal depolarization of an identified modulatory cell type (the cerebral giant cells, CGCs) of the snail Lymnaea stagnalis encodes information that enables the expression of long-term associative memory [8]. The Lymnaea CGCs therefore provide a highly suitable experimental system for investigating the ionic mechanisms of nonsynaptic plasticity that can be linked to behavioral learning. Based on a combined behavioral, electrophysiological, immunohistochemical, and computer simulation approach, here we show that an increase of a persistent sodium current of this neuron underlies its delayed and persistent depolarization after behavioral single-trial classical conditioning. Our findings provide new insights into how learning-induced membrane level changes are translated into a form of long-lasting neuronal plasticity already known to contribute to maintained adaptive modifications at the network and behavioral level [8].
                Bookmark

                Author and article information

                Journal
                Biophysics (Nagoya-shi)
                Biophysics (Nagoya-shi)
                biop
                Biophysics
                The Biophysical Society of Japan (BSJ)
                1349-2942
                2014
                25 December 2014
                : 10
                : 121-133
                Affiliations
                [1 ]Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
                [2 ]Course of Bioscience, Graduate School of Bioscience, Tokai University, Graduate School, 317 Nishino, Numazu 410-0321, Shizuoka, Japan
                [3 ]Department of Biological Science and Technology, School of High-Technology for Human Welfare, Tokai University, 317 Nishino, Numazu 410-0321, Shizuoka, Japan
                Author notes
                Corresponding author: Hiroshi Sunada, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1. e-mail: hsunada@ 123456ucalgary.ca
                Article
                10_121
                10.2142/biophysics.10.121
                4629664
                27493506
                f509cdab-fddd-48bd-b56d-a8f195765201
                ©2014 THE BIOPHYSICAL SOCIETY OF JAPAN
                History
                : 14 October 2014
                : 20 November 2014
                Categories
                Review Article

                taste avoidance conditioning,lymnaea,modulatory neuron,central pattern generator,motor neuron

                Comments

                Comment on this article