119
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Preparing synthetic biology for the world

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Synthetic Biology promises low-cost, exponentially scalable products and global health solutions in the form of self-replicating organisms, or “living devices.” As these promises are realized, proof-of-concept systems will gradually migrate from tightly regulated laboratory or industrial environments into private spaces as, for instance, probiotic health products, food, and even do-it-yourself bioengineered systems. What additional steps, if any, should be taken before releasing engineered self-replicating organisms into a broader user space? In this review, we explain how studies of genetically modified organisms lay groundwork for the future landscape of biosafety. Early in the design process, biological engineers are anticipating potential hazards and developing innovative tools to mitigate risk. Here, we survey lessons learned, ongoing efforts to engineer intrinsic biocontainment, and how different stakeholders in synthetic biology can act to accomplish best practices for biosafety.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Adding new chemistries to the genetic code.

          The development of new orthogonal aminoacyl-tRNA synthetase/tRNA pairs has led to the addition of approximately 70 unnatural amino acids (UAAs) to the genetic codes of Escherichia coli, yeast, and mammalian cells. These UAAs represent a wide range of structures and functions not found in the canonical 20 amino acids and thus provide new opportunities to generate proteins with enhanced or novel properties and probes of protein structure and function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Type VI secretion delivers bacteriolytic effectors to target cells

            Peptidoglycan is the major structural constituent of the bacterial cell wall, forming a meshwork outside the cytoplasmic membrane that maintains cell shape and prevents lysis. In Gram-negative bacteria, peptidoglycan is located in the periplasm, where it is protected from exogenous lytic enyzmes by the outer membrane. Here we show that the type VI secretion system (T6SS) of Pseudomonas aeruginosa breaches this barrier to deliver two effector proteins, Tse1 and Tse3, to the periplasm of recipient cells. In this compartment, the effectors hydrolyze peptidoglycan, thereby providing a fitness advantage for P. aeruginosa cells in competition with other bacteria. To protect itself from lysis by Tse1 and Tse3, P. aeruginosa utilizes specific periplasmically-localized immunity proteins. The requirement for these immunity proteins depends on intercellular self-intoxication through an active T6SS, indicating a mechanism for export whereby effectors do not access donor cell periplasm in transit.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn's disease.

              The use of living, genetically modified bacteria is an effective approach for topical delivery of immunomodulatory proteins. This strategy circumvents systemic side effects and allows long-term treatment of chronic diseases. However, treatment of patients with a living, genetically modified bacterium raises questions about the safety for human subjects per se and the biologic containment of the transgene. We treated Crohn's disease patients with genetically modified Lactococcus lactis (LL-Thy12) in which the thymidylate synthase gene was replaced with a synthetic sequence encoding mature human interleukin-10. Ten patients were included in a placebo-uncontrolled trial. Patients were assessed daily for the presence of potential adverse effects by direct questioning and assessment of disease activity. We evaluated the presence and kinetics of LL-Thy12 release in the stool of patients by conventional culturing and quantitative polymerase chain reaction of LL-Thy12 gene sequences. Treatment with LL-Thy12 was safe because only minor adverse events were present, and a decrease in disease activity was observed. Moreover, fecally recovered LL-Thy12 bacteria were dependent on thymidine for growth and interleukin-10 production, indicating that the containment strategy was effective. Here we show that the use of genetically modified bacteria for mucosal delivery of proteins is a feasible strategy in human beings. This novel strategy avoids systemic side effects and is biologically contained; therefore it is suitable as maintenance treatment for chronic intestinal disease.
                Bookmark

                Author and article information

                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbio.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                25 January 2013
                2013
                : 4
                : 5
                Affiliations
                [1] 1Leukippos Institute Berlin, Germany
                [2] 2School of Biological and Health Systems Engineering, Arizona State University Tempe, AZ, USA
                Author notes

                Edited by: David Nielsen, Arizona State University, USA

                Reviewed by: Lei Chen, Tianjin University, China; Tae Seok Moon, Washington University in St. Louis, USA

                *Correspondence: Karmella A. Haynes, School of Biological and Health Systems Engineering, Arizona State University, 501 E Tyler Mall, 9709 Tempe, AZ 85287, USA. e-mail: karmella.haynes@ 123456asu.edu

                This article was submitted to Frontiers in Microbiotechnology, Ecotoxicology and Bioremediation, a specialty of Frontiers in Microbiology.

                Article
                10.3389/fmicb.2013.00005
                3554958
                23355834
                f5164c53-7c58-4997-a15d-2d8ff49513bc
                Copyright © 2013 Moe-Behrens, Davis and Haynes.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

                History
                : 23 October 2012
                : 04 January 2013
                Page count
                Figures: 3, Tables: 2, Equations: 0, References: 78, Pages: 10, Words: 8761
                Categories
                Microbiology
                Review Article

                Microbiology & Virology
                synthetic biology,biosafety research,containment of biohazards,risk assessment

                Comments

                Comment on this article