0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genomic and Mitochondrial Data Identify Different Species Boundaries in Aposematically Polymorphic Eniclases Net-Winged Beetles (Coleoptera: Lycidae)

      research-article

      , , , *

      Insects

      MDPI

      mtDNA, RAD, morphology, Lycidae, Metriorrhynchini, species delimitations, taxonomy

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Species delineation is essential for any evolutionary and biodiversity research, and recent advances in genomic sequencing have made it possible to robustly define species boundaries and detect hidden diversity. Here, we studied 14 species of aposematically colored New Guinean Eniclases (Coleoptera: Lycidae) whose conventional morphology- and single-locus mtDNA-based taxonomy has been contentious. We analyzed mitochondrial and restriction site associated DNA fragments to obtain a phylogenetic hypothesis and compared relationships recovered by the RAD analysis with species limits based on other information. The results show the presence of cryptic diversity and common mitonuclear discordance when over 30% of individuals were incorrectly assigned to species if only mitogenomic markers were considered. Nuclear data falsified the species rank of one species and identified one earlier unrecognized lineage deserving species rank. Further, our analyses demonstrate a highly variable phenotypic differentiation, with several pairs of cryptic species standing in contrast with genetically close but phenotypically highly divergent lineages. We show that morphological and mitogenomic analyses produce reliable information for taxonomy in most cases. Nevertheless, the species boundaries among closely related species should be based on all lines of evidence, including nuclear markers.

          Related collections

          Most cited references 40

          • Record: found
          • Abstract: found
          • Article: not found

          Applications of next generation sequencing in molecular ecology of non-model organisms.

          As most biologists are probably aware, technological advances in molecular biology during the last few years have opened up possibilities to rapidly generate large-scale sequencing data from non-model organisms at a reasonable cost. In an era when virtually any study organism can 'go genomic', it is worthwhile to review how this may impact molecular ecology. The first studies to put the next generation sequencing (NGS) to the test in ecologically well-characterized species without previous genome information were published in 2007 and the beginning of 2008. Since then several studies have followed in their footsteps, and a large number are undoubtedly under way. This review focuses on how NGS has been, and can be, applied to ecological, population genetic and conservation genetic studies of non-model species, in which there is no (or very limited) genomic resources. Our aim is to draw attention to the various possibilities that are opening up using the new technologies, but we also highlight some of the pitfalls and drawbacks with these methods. We will try to provide a snapshot of the current state of the art for this rapidly advancing and expanding field of research and give some likely directions for future developments.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework

            Background Structural alignment of RNAs is becoming important, since the discovery of functional non-coding RNAs (ncRNAs). Recent studies, mainly based on various approximations of the Sankoff algorithm, have resulted in considerable improvement in the accuracy of pairwise structural alignment. In contrast, for the cases with more than two sequences, the practical merit of structural alignment remains unclear as compared to traditional sequence-based methods, although the importance of multiple structural alignment is widely recognized. Results We took a different approach from a straightforward extension of the Sankoff algorithm to the multiple alignments from the viewpoints of accuracy and time complexity. As a new option of the MAFFT alignment program, we developed a multiple RNA alignment framework, X-INS-i, which builds a multiple alignment with an iterative method incorporating structural information through two components: (1) pairwise structural alignments by an external pairwise alignment method such as SCARNA or LaRA and (2) a new objective function, Four-way Consistency, derived from the base-pairing probability of every sub-aligned group at every multiple alignment stage. Conclusion The BRAliBASE benchmark showed that X-INS-i outperforms other methods currently available in the sum-of-pairs score (SPS) criterion. As a basis for predicting common secondary structure, the accuracy of the present method is comparable to or rather higher than those of the current leading methods such as RNA Sampler. The X-INS-i framework can be used for building a multiple RNA alignment from any combination of algorithms for pairwise RNA alignment and base-pairing probability. The source code is available at the webpage found in the Availability and requirements section.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A species definition for the modern synthesis.

               James Mallet (1995)
              One hundred and thirty-six years since On the Origin of Species 3., biologists might be expected to have an accepted theory of speciation. Instead, there is, if anything, more disagreement about speciation than ever before. Even more surprisingly, 60 years after the biological species concept, in which species were considered to be reproductive communities isolated from other such communities, we still do not all accept a common definition of what a species is. And yet, if speciation is to be any different from ordinary evolution, we must have a clear definition of species. The emerging solution to the species problem is an updated, genetic version of Darwin's own definition. This definition is useful and is already being used in taxonomy, in biodiversity studies and in evolution.
                Bookmark

                Author and article information

                Journal
                Insects
                Insects
                insects
                Insects
                MDPI
                2075-4450
                11 September 2019
                September 2019
                : 10
                : 9
                Affiliations
                Laboratory of Molecular Systematics, Department of Zoology, Faculty of Science, Palacky University, 17. listopadu 50, 771 46 Olomouc, Czech Republic; bocema00@ 123456gmail.com (M.B.); motyka01@ 123456gmail.com (M.M.); dominik.kusy2@ 123456gmail.com (D.K.)
                Author notes
                Article
                insects-10-00295
                10.3390/insects10090295
                6780303
                31514482
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                Categories
                Article

                Comments

                Comment on this article